Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
64
Добавлен:
29.03.2016
Размер:
4.09 Mб
Скачать

Раздел II. Сульфиды, сульфосоли и им подобные соединения

271

Происхождение и месторождения. Распространен в гидротермальных

жилах свинцово цинково серебряных руд (так называемой благородной кварцево кальцитовой формации). Встречается среди минералов, образу ющихся в последних стадиях гидротермальных процессов, иногда совмест но с пираргиритом. В парагенезисе с этими минералами очень часто встре чается галенит, иногда самородное серебро, а также различные по составу сульфоарсениты и сульфоантимониты свинца, серебра и меди. В некото рых месторождениях они ассоциируют с арсенидами никеля и кобальта.

В зоне окисления прустит и пираргирит разлагаются, иногда с образова нием самородного серебра и аргентита. Обычно же серебро в виде неустой чивого Ag2SO4 способно мигрировать, особенно в присутствии свободной серной кислоты и сульфата окиси железа. В ряде случаев устанавливается обогащение серебром нижних горизонтов зоны окисления месторождений.

Среди свинцово цинковых месторождений России прустит, так же как

ипираргирит, наблюдается сравнительно редко, главным образом в мик роскопических выделениях, устанавливаемых в полированных шлифах. Наиболее часто они встречаются в ряде свинцово цинково серебряных месторождений Западного Верхоянья (Якутия) — в Безымянском, Верх' не'Эндыбальском, Березинском и др.

Из иностранных месторождений наиболее богаты ими месторожде ния Мексики (Цакатекас, Гуанахуато и др.), Чили, Перу, Боливии и др.

Практическое значение. Прустит и пираргирит принадлежат к числу наи болееширокораспространенныхсеребросодержащихминераловипотомуиме ют значение как источники серебра. При плавке галенитовых концентратов, получаемых из свинцово цинковых руд, серебро получается попутно.

ПИРАРГИРИТ — Ag3SbS3. Название происходит от греч. пирос — огонь и аргирос — серебро. Синонимы: темно красная серебряная руда, серебряная обманка (рис. 132).

Физические свойства этого минерала во многом аналогичны описан ным выше для прустита. Отметим отличительные особенности. Цвет в от раженном свете темно красный до железно черного; на углах кристаллов

ив обломках пираргирит просвечивает. Черта темная

вишнево красная. Уд. вес 5,77–5,86 (больше, чем прус тита). Прочие диагностические признаки указаны выше (см. прустит).

В природе встречается в тех же условиях, что и пру стит, но преимущественно с содержащими сурьму ми нералами.

СТЕФАНИТ — Ag5SbS4 или 5Ag2S . Sb2S3. Содер жание Ag — 68,5 %. Сингония ромбическая; ромбо пи рамидальный в. с. L2PC. a0 = 7,72; b0=12,34; с0 = 8,50. Пр. гр. Сmс21 (C122v). Встречается в короткопризматических кристаллах и сплошных массах.

Рис. 132. Кристалл пираргирита:

o {0001}, r {1011}, m {1010}, y {3251}

272

Описательная часть

Цвет серовато черный. Черта черная. Блеск металлический. Тверj дость 2–2,5. Хрупкий. Спайность по {010} средняя. Уд. вес 6,2–6,3.

П.п. тр. на угле плавится с растрескиванием, образуя налет Sb2O3.

Ссодой дает королек серебра. Разлагается разбавленной HNO3 с выделе

нием S и Sb2S3.

Вместе с другими минералами серебра, обычно в очень небольших количествах, встречается в жилах гидротермального происхождения. Описан в месторождениях Саксонии и Гарца (Германия), в ряде место рождений Мексики и в других местах.

ПОЛИБАЗИТ — (Ag,Cu)16Sb2S11 или 8(Ag,Cu)2S . Sb2S3. Содержание Ag — 62,1–74,9 %, Сu — 3–10 %. Сингония моноклинная; призматиче

ский в. с. L2PC. a0 = 26,17; b0=15,11; с0 = 23,89, β = 90°. Пр. гр. С2/m (C32h). Наблюдается в пластинчатых или короткопризматических кристаллах

псевдотригонального или псевдогексагонального облика.

Цвет серовато черный. Черта черная с красноватым оттенком. Блеск металлический. Твердость 2–3. Спайность по {001}. Уд. вес 6,27–6,33.

П. п. тр. на угле очень легко плавится в металлический шарик с выде лением дыма и налета Sb2S3. При сплавлении с фосфорнокислой солью дает зеленовато синий перл (медь).

Вместе с другими сульфосолями серебра встречается в низкотемпе ратурных гидротермальных жилах в ряде районов: Яхимов и Пршибрам

(Чехия), Банска'Штьявница (Словакия), Цакатекас, Гуанахуато и Ду' ранго (Мексика) и других местах.

5. Сульфосоли свинца

Относящиеся сюда соединения представлены главным образом суль фоарсенитами, сульфоантимонитами и сульфовисмутитами свинца. Все эти соединения ведут себя обособленно от сульфосолей меди и серебра, иногда лишь образуя с ними двойные соединения.

Мы рассмотрим лишь два минерала — буланжерит и джемсонит. БУЛАНЖЕРИТ — Pb5Sb4S11 или 5PbS . 2Sb2S3.

Химический состав. Рb — 55,4 %, Sb — 25,7 %, S — 18,9 %. Содержа ние Рb колеблется в пределах 54—58 %; часть его бывает связана с меха нической примесью галенита. Иногда содержит медь до 1 %.

Сингония моноклинная; призматический в. с. L2PC. Пр. гр. P21/a (С 52h). Кристаллы крайне редки. Обычно встречается в тонкозернистых или спу танно волокнистых агрегатах.

Цвет буланжерита свинцово серый до железно черного. Черта серова то черная с коричневатым оттенком. Непрозрачен. Блеск металлический.

Твердость 2,5–3. Хрупок. Спайность по {100} средняя. Уд. вес 6,23. Диагностические признаки. Обычно бывают характерны тонковолокни

стые агрегаты и коричневатый оттенок черты. Без данных химического ана лиза и рентгеновских исследований невозможно с уверенностью отличить от ряда других, более редко встречающихся сульфоантимонитов свинца.

Раздел II. Сульфиды, сульфосоли и им подобные соединения

273

П.п. тр. легко плавится. С содой на угле дает королек свинца и плотный

белый налет Sb2O3 вблизи пробы. Растворяется в HNO3 и горячей НСl.

Происхождение и месторождения. Встречается в гидротермальных

месторождениях свинцово цинковых руд в сопровождении сульфоанти монитов свинца и меди, галенита, сфалерита, пирита, арсенопирита и др.

Отмечался в ряде месторождений Нерчинского района в Восточном Забайкалье: Алгачинском (в значительных количествах), Кличкинском, Дарасунском и др. В альпийских хрусталеносных жилах Приполярного Урала отмечен в виде игольчатых вростков в кварце. Встречается в На' гольном кряже (Украина) в ассоциации со сфалеритом, галенитом, бур нонитом, блеклой рудой и другими минералами.

В зоне окисления легко разрушается, образуя церуссит Pb[CO3] и гид роокислы сурьмы.

Практическое значение. В случае значительных скоплений представ ляет интерес как свинцовая руда.

ДЖЕМСОНИТ — Pb4FeSb6S14 или 4PbS . FeS . 3Sb2S3. Разновидность, не содержащая железа, носит название плюмозита.

Химический состав не всегда точно отвечает формуле. Содержит Рb — 40–50 %, Fe — до 10 %, Sb — около 30 %, S — около 20 %. В виде примеси часто присутствуют медь, цинк и серебро.

Сингония моноклинная; призматический в. с. L2PC. Пр. гр. P21/a (С 52h). Часто встречается в виде призматических, игольчатых и волосовидных кристаллов, иногда в виде вростков в кристаллах кварца, сфалерита и дру гих, позднее кристаллизующихся минералов в друзовых пустотах.

Цвет джемсонита свинцово серый. Черта серовато черная. На гранях иногда наблюдается синевато серая побежалость. Блеск металлический.

Твердость 2–3. Хрупкий. Излом неровный. Спайность по {001} сред няя. Уд. вес 5,5–6,0.

Диагностические признаки. На глаз невозможно отличить от других суль фоантимонитов свинца, встречающихся в игольчатых формах. В случае па раллельно шестоватых агрегатов распознается, благодаря базальной спайно сти, перпендикулярной к направлению развития индивидов. Для точной диагностики необходимы химический анализ и рентгеновские исследования.

П.п. тр. плавится. На угле получается королек свинца. С содой дает

белый налет Sb2O3. В HNO3 легко растворяется.

Происхождение и месторождения. В России встречается в Саввинском

месторождении (Забайкалье), в гидротермальных свинцово цинковых ру дах в ассоциации с кварцем, галенитом, иногда сфалеритом и другими минералами, в друзовых пустотах. Описан также в Дарасунском золото рудном месторождении (Забайкалье).

В Украине джемсонит известен в полиметаллических жилах Наголь' ного кряжа в ассоциации с кальцитом и в других местах. Из месторожде ний зарубежных стран в значительных количествах был встречен в Ци' мапане (Мексика).

Раздел III

ГАЛОИДНЫЕ СОЕДИНЕНИЯ (ГАЛОГЕНИДЫ И ГАЛОГЕНОСОЛИ)

Общие замечания. Начиная с этого типа соединений мы будем иметь дело с минералами, резко отличающимися по своим свойствам от рас смотренных до сих пор. В подавляющей массе это будут уже соединения с типичной ионной или ковалентной полярной связью, обусловливающей совсем другие свойства минералов. Наиболее яркими представителями их являются галоидные соединения металлов.

С химической точки зрения относящиеся сюда минералы представ лены солями кислот: HF, HCl, HBr и HJ; соответственно этому среди этих минералов различают фториды, хлориды, бромиды и иодиды. Галогеносо ли являются комплексными соединениями, из которых здесь рассматри ваются фторалюминаты. Кроме того, существуют водные соли и более сложные соединения, содержащие добавочные кислородсодержащие ани оны: [ОН]1–, О2–, изредка [SO4]2– и [JO3]1–. Это так называемые оксигало идные соединения, переходные к типичным кислородным соединениям.

Как показано на рис. 133, главные элементы, образующие галогени ды, в противоположность тому, что мы наблюдали в ранее рассмотрен ных минералах, расположены в левой половине менделеевской таблицы, преимущественно в I и во II группах. Галоидные соединения тяжелых металлов, наоборот, играют совершенно ничтожную роль в минералогии природных образований и возникают в особых условиях.

Кристаллохимические особенности галоидных соединений. Установ лено, что галогениды легких металлов характеризуются структурами с ти

Рис. 133. Элементы, для которых характерны соединения с галоидами (набраны жирным шрифтом)

Раздел III. Галоидные соединения (галогениды и галогеносоли)

275

пичной гетерополярной (ионной) связью, тогда как в соединениях тяже лых металлов, катионы которых обладают сильной поляризацией, возни кают гомополярные (ковалентные) или переходные к ним связи между иона ми. В соответствии с этим находятся и физические свойства минералов.

Так как в галогенидах с типичной ионной связью принимают участие катионы легких металлов с малыми зарядами и большими ионными радиу сами, а в связи с этим с весьма слабой способностью к активной поляриза ции, то естественно, что эти минералы обладают прозрачностью, бесцветно стью (наблюдаемые окраски, как правило, являются аллохроматическими), малыми удельными весами, а также такими свойствами, как необычайно легкая растворимость многих галогенидов в воде, низкие показатели пре ломления, а следовательно, и слабый стеклянный блеск минералов.

Что касается катионов тяжелых металлов с 18 электронной наруж ной оболочкой (Cu, Ag и др.), склонных к сравнительно резко выражен ной поляризации окружающих анионов и к образованию кристалличе ских структур с ковалентной связью, то здесь мы наблюдаем уже существенные отличия в свойствах галогенидов высокие удельные веса, наличие у ряда соединений хотя и слабой, но идиохроматической окрас ки, сильно повышенные показатели преломления, алмазный блеск, резко пониженная растворимость этих минералов и др.

Теперь перейдем к характеристике свойств, зависящих от главных анионов в галогенидах: F1–, Cl1–, Вr1– и J1–.

Прежде всего следует отметить, что анион F1– значительно отличает ся по своим размерам от остальных анионов, как это видно из сопостав ления их радиусов (в ангстремах):

F1–

Cl1–

Вr1–

J1–

1,33

1,81

1,96

1,19

Это обстоятельство весьма существенно сказывается на выборе тех или иных катионов для образования соединений (в соответствии с коор динационными числами и типом кристаллической структуры), на их ус тойчивости, а в связи с этим и на физических и химических свойствах. Не случайно, что главная масса фтора в земной коре связана с Са и отча сти с Аl и Si (в галогеносолях), тогда как хлор и резко подчиненные ему по распространенности бром и йод в основном связаны с Na, К, (Rb), (Cs) и Mg (в водных солях). В противоположность хлоридам, бромидам и иоди дам тяжелых металлов (Аu, Ag, Hg и др.) их фториды вовсе не встречают ся в природных условиях. Хлориды легких металлов чрезвычайно легко растворяются в водной среде, тогда как их фториды в большинстве своем устойчивы по отношению к воде. Насколько велика разница в раствори мости этих типов соединений, можно видеть из данных, приводимых в табл. 7.

276

Описательная часть

Таблица 7

Растворимость галоидных соединений в воде при 18 °С (в молях на литр насыщенного раствора)

Анионы

 

 

 

Катионы

 

 

 

 

 

 

 

 

 

 

 

 

 

Li

Na

К

Mg

Ca

Sr

Ba

Pb2+

F

0,11

1,06

12,4

0,02

0,03

0,001

0,03

0,003

 

 

 

 

 

 

 

 

 

Cl

13,1

5,42

3,9

5,1

5,4

3,0

1,7

0,05

 

 

 

 

 

 

 

 

 

Вr

12,6

6,9

4,6

4,6

5,2

3,4

2,9

0,02

 

 

 

 

 

 

 

 

 

J

8,5

8,1

6,0

4,1

4,8

3,9

3,8

0,02

 

 

 

 

 

 

 

 

 

Температуры плавления и кипения фторидов несравненно выше, чем хлоридов тех же металлов. Например, температура кипения SnF4 равна 705 °С, a SnCl4 — 114 °С, фторид алюминия AlF3 кипит при температуре выше 1000 °С, а его хлорид АlСl3 — при температуре всего лишь 81 °С и т. д.

Об особенностях поведения галогенов в природе. Крайне интерес ны геохимические черты галогенов F, Cl, Br и J, выражающиеся в поведе нии их при различных геологических процессах.

При магматических процессах не создается условий для концентрации этих элементов в сколько нибудь значительных количествах. Фтор и хлор лишь в качестве добавочных анионов входят в ряд минералов, преимущест венно силикатов и фосфатов (большей частью в пегматитах и в контактово метасоматических образованиях). Главная масса этих элементов, очевидно

ввиде летучих соединений с металлами, переходит в гидротермальные раст воры. О том, что хлор и фтор действительно являются составной частью ле тучих погонов магм, свидетельствуют выделения НСl и HF в газообразных продуктах вулканических извержений, иногда в весьма значительных коли чествах. Например, на Аляске в долине, известной под названием «Десять тысяч дымов», в 1919 г., по подсчетам, выделилось 1,25 млн т газообразной

НСl и 0,2 млн т HF вместе с парами Н2О.

Из галогенидов во многих гидротермальных образованиях широко пред

ставлен CaF2 (флюорит), отчасти фторалюминаты, однако хлориды метал лов не встречаются, если не считать крайне редких находок NaCl (галита)

ввиде микроскопических кристалликов в капельках растворов, обнаружи ваемых в виде включений в некоторых минералах (кварце, галените).

Зато в экзогенных условиях хлориды Na, в меньшей степени хлори ды, К, Mg и других металлов, образуются, нередко в огромных массах, в усыхающих соленосных бассейнах вместе с сульфатами, иногда бората ми и другими растворимыми в воде соединениями. Вместе с хлором со ответствующая концентрация наблюдается также для брома и йода. В на стоящее время 70–75 % всего имеющегося в земной коре хлора

Раздел III. Галоидные соединения (галогениды и галогеносоли)

277

(и, очевидно, брома), а также свыше 90 % йода сосредоточено в океани ческой воде. В противовес этому фториды в соленосных осадках в сколь ко нибудь существенных количествах не наблюдаются. Гигантскими кол лекторами растворенных хлоридов, как известно, являются океанические и морские бассейны. Однако содержание фтора в морской воде совершен но ничтожно: около 0,8 г на 1 м2, причем, как установлено, этот элемент частично усваивается организмом и входит в состав костяка высших жи вотных, особенно в состав зубной эмали, состоящей почти исключитель но из фтористого кальция.

Для миграции фтора в экзогенных условиях характерна еще одна осо бенность. В процессе выветривания горных пород и рудных месторож дений, в общей сложности, наряду с хлором освобождаются немалые ко личества этого элемента, но химическое сродство его к кальцию настолько велико, что по пути следования к морским бассейнам он в значительной мере выпадает из растворов с образованием труднораство римого соединения CaF2 и задерживается в континентальных осадках. Этим и объясняется совершенно незначительное содержание его в мор ской воде.

Оклассификации галогенидов. Таким образом, все, что сказано

освойствах галогенидов и о геохимической роли галогенов при процес сах минералообразования, заставляет все минералы, относящиеся к дан ному разделу, разбить на два класса.

·Класс 1. Фториды и соли комплексных фторных кислот.

·Класс 2. Хлориды, бромиды и иодиды.

КЛАСС 1. ФТОРИДЫ

Фториды как минералы имеют довольно ограниченное распростра нение в природе, хотя общее число элементов, участвующих в соедине ниях с фтором, достигает 15, и это не учитывая тех минералов, в которых фтор наряду с гидроксилом выполняет роль дополнительного аниона. Главное значение из них имеет фторид Са в виде самостоятельного со единения CaF2. Гораздо меньшая роль принадлежит Be, Аl и Si. Другие элементы входят в состав крайне редких фторидов.

Установленные до сих пор более широко распространенные фториды встречаются преимущественно в гидротермальных образованиях, а ред кие — в продуктах возгона при вулканических извержениях. Судя по па рагенезису минералов, они образуются при относительно повышенных температурах. Лишь CaF2 в виде новообразований рассеянных мельчай ших кристалликов нередко встречается также в зонах окисления рудных месторождений и в некоторых осадочных породах.

Среди относящихся сюда природных соединений рассмотрим следу ющие минералы: флюорит и криолит.

278

Описательная часть

ФЛЮОРИТ — CaF2. Название произошло от fluorum — латинского названия элемента F. Синоним: плавиковый шпат1. Этот минерал, как и другие богатые фтором минералы, является хорошим флюсом для руд, ускоряя их плавление.

Химический состав. Са — 51,2 %, F — 48,8 %. Иногда содержит в виде изоморфной примеси Сl (главным образом желтые разности). В некото рых случаях обнаруживаются битуминозные вещества, издающие запах. Из других примесей укажем Fe2O3, редкие земли, изредка уран (до несколь ких процентов), фтор и гелий.

 

Сингония кубическая; гексаоктаэдриче

 

ский в. с. 3L44L36L29PC. Пр. гр. Fm3m(О5). a =

 

6

h

0

 

= 5,450. Кристаллическая структура являет

 

ся типической для многих соединений типа

 

АХ2 (рис. 134). Она характеризуется двумя

 

координационными числами: для Са — 8 и

 

для F — 4. Ионы F1– расположены по углам,

 

а ионы Са2+ занимают центры всех малых ку

 

бов (рис. 135). Можно считать катионы Са2+

 

формально находящимися в позициях плот

 

нейшей кубической упаковки, тогда как ани

Рис. 134. Кристаллическая

оны F1– занимают все тетраэдрические пус

структура флюорита

тоты; реально структура флюорита, конечно,

 

не является плотноупакованной. Облик криj

 

сталлов. В пустотах встречается в виде хоро

 

шо образованных кубических, реже октаэд

 

рических и додекаэдрических кристаллов.

 

Кроме форм {100}, {111} и {110} иногда при

 

сутствуют {210}, {421} и др. Грани куба обыч

 

но гладкие, а октаэдрические грани матовые.

 

Иногда грани куба имеют мозаичное строе

 

ние и паркетообразный рисунок; антискелет

 

ное развитие таких кристаллов может при

Рис. 135. Кристаллическая

вести к возникновению гранных форм {100}

с октаэдрическим обликом (рис. 136). Двой

структура флюорита (по Н. В.

ники часты по (111). Агрегаты. Чаще наблю

Белову). Вершины каждого

кубика заняты F, а центры — Ca

дается в виде вкраплений и сплошных зер

нистых, реже землистых масс (ратовкит). Цвет. Флюорит редко бывает бесцветным и водяно прозрачным. Боль

шей частью окрашен в различные цвета: желтый, зеленый, голубой, фио летовый, иногда фиолетово черный. Любопытно, что окраска исчезает при нагревании и вновь возвращается при облучении рентгеновскими луча

1 Шпатами в минералогии называют кристаллические вещества, не имеющие металли ческого блеска, но обладающие совершенной спайностью по двум или более направлениям.

Раздел III. Галоидные соединения (галогениды и галогеносоли)

279

ми. В бесцветных кристаллах можно

 

вызвать фиолетовую окраску также

 

действием паров металлического

 

кальция и электрическими разряда

 

ми. Это наводит на мысль, что в ряде

 

случаев цвет обусловлен появлени

 

ем в кристаллической структуре де

 

фектных центров окраски, каждый

 

из которых представляет собой ва

 

кансию на месте аниона F1–, заме

 

щенного свободным электроном.

 

Блеск стеклянный. N = 1,434.

 

Твердость 4. Хрупок. При про

 

должительном одностороннем дав

 

лении обнаруживает пластическую

Рис. 136. Автоэпитаксическое обраста

деформацию. Спайность совершен

ние октаэдра флюорита кубическими

ная по октаэдру, а не по ромбическо

субиндивидами привело к образованию

вершинно реберного скелетного крис

му додекаэдру, как это можно было

талла октаэдрического облика

бы ожидать исходя из представле

 

ний о том, что наименьшее сцепление должно иметь место для плоских сеток с наибольшими расстояниями друг от друга. Объясняется это тем, что среди плоских сеток (111) каждая сетка ионов кальция переслоена двумя параллельными сетками одинаково заряженных ионов фтора, чем и обусловливается наименьшее сцепление именно между ними. Уд. вес 3,18 (у нечистых разностей колеблется в пределах 3,0–3,2) Прочие свойj ства. Часто проявляется флюоресценция (термин произошел именно от названия этого минерала). В катодных лучах флюорит светится обычно фиолетовым цветом со своеобразным синевато зеленым оттенком. Све чение появляется также при нагревании (термолюминесценция).

Диагностические признаки. После некоторого навыка узнается до вольно легко по формам кристаллов, октаэдрической спайности, слабо му слегка тусклому стеклянному блеску и твердости.

П. п. тр. растрескивается, светится и с трудом оплавляется по краям (1270 °С). По выделении всего фтора образуется неплавкая известь CaO. Весьма слабо растворим в воде. Вполне разлагается лишь в крепкой H2SO4 с выделением HF. HNO3 и НСl действуют гораздо слабее.

Происхождение и месторождения. В главной своей массе образует ся при гидротермальных процессах, часто являясь спутником рудных металлических минералов в жилах. Может встречаться в ассоциации с самыми разнообразными минералами гидротермального происхождения.

Он наблюдается также в некоторых породах осадочного происхожде ния, но не образует значительных скоплений с высоким содержанием F. Как трудно растворимое в воде соединение, CaF2 из соленосных растворов

280

Описательная часть

выпадает одним из первых, иногда в аморфном виде. Поэтому неудиви тельно, что редко встречающиеся скопления флюорита приурочены к ранним химическим осадкам, т. е. к отложениям гипса, ангидрита, каль цита, доломита. Изредка в виде новообразований он наблюдается в зоне окисления рудных месторождений, например в виде кристалликов на почковидном гётите.

Как спутник флюорит встречается в многочисленных месторождени ях цветных и редких металлов. Из месторождений России, в которых флюорит играет главную роль, отметим Калангуй (Забайкалье) в виде мощной брекчиевой жилы в песчаниках и сланцах, сложенной концент рически зональными и шестоватыми агрегатами флюорита разных оттен ков (белого, желтого и красновато желтого). Землистый флюорит оса дочного происхождения (ратовкит) встречен в доломитизированных известняках по берегам речки Ратовки у г. Вереи (Московская область), на правом берегу р. Осуги (Тверская область) и в других местах. Оптичес кий флюорит обнаружен в районе Амдермы (Ямало Ненецкий округ).

В ближнем зарубежье отметим месторождение Керемет'Тас в Казах стане и месторождения оптического флюорита Куликолон и Могов в Тад жикистане.

Практическое значение. В значительной своей части (около 70 %) флюорит используется в металлургии с целью получения более легко плавких шлаков. В химической промышленности из флюорита получа ют ряд фтористых соединений, из которых плавиковая кислота (раствор HP в воде) употребляется для гравирования на стекле, получения пере киси водорода из перекиси натрия и т. п., а искусственно получаемый криолит (Na3[AlF6]) — для получения электролизом металлического алю миния из глинозема и для других целей. Применяется также в керамике для получения эмалей и глазури. Прозрачные бесцветные разности кри сталлов используются в оптике для изготовления линз, устраняющих сферическую и хроматическую аберрации в объективах микроскопов.

КРИОЛИТ — Na3[AlF6]. От греч. криос — лед, литос — камень. Оче видно, назван по сходству со льдом, к которому по блеску и показателю преломления действительно очень близок.

Химический состав. Аl — 12,8 %, Na — 32,8 %, F — 54,4 %. Иногда в качестве примеси присутствует Fe.

Сингония моноклинная призматический в. с. L2PC. Пр. гр. P2/m (C 22h). а0 = 5,39; b0 = 5,59; с0 = 7,76; β=90°11′. Псевдокубический; при температуре около 500 °С становится кубическим. В структуре криолита октаэдриче ские группировки [AlF6]3+ расположены в вершинах и в центре элемен тарного параллелепипеда, тогда как катионы Na+ , имеющие по F также координационное число 6, расположены в серединах вертикальных ре бер и приблизительно вдоль средних линий вертикальных граней на вы сотах в одну и в три четверти периода повторяемости вдоль оси с. Струк

Соседние файлы в папке Бетехтин