
Минералогия_2 / Бетехтин / betehtin_1
.pdf
Глава 3. О методах детальных минералогических исследований |
101 |
Этим путем удается не только установить сингонию и вид симметрии кри сталлов, но и определить состав минерала. Е. С. Федоровым создан мону ментальный труд «Царство кристаллов» (1920), в котором приводятся спе циальные таблицы по кристаллохимическому анализу.
Надо отметить, что по мере широкого введения в практику рентгенов ских методов изучения кристаллического вещества, кристаллохимиче ский анализ как метод диагностики постепенно потерял свое значение и сейчас представляет лишь исторический интерес, однако изучение раз нообразия габитусных типов кристаллов некоторых широко распростра ненных минералов (кальцит, пирит, циркон) в связи с условиями их об разования привело к установлению типоморфного значения формы кристаллов и позволило сформулировать важные положения поисковой кристалломорфологии.
Рентгенометрический анализ (рентгенография)1, применяемый для определения кристаллического вещества путем сравнения получаемых рентгенограмм с эталонными, может быть произведен различными мето дами, из которых наиболее употребительны: метод вращения кристалла (Поляни), метод рентгеновского гониометра (Вейссенберга) и метод по рошка (Дебая — Шеррера).
Первые два метода применяются в тех случаях, когда мы имеем дело с монокристаллами. Под методом вращения кристалла подразумевается рентгеносъемка вращающегося кристалла при облучении монохромати ческими рентгеновскими лучами. В противоположность этому в методе Лауэ кристалл неподвижен и облучается непрерывным спектром рентге новской трубки. При более широко применяемой рентгеносъемке по ме тоду Вейссенберга помимо вращения кристалла производится также по ступательное движение цилиндрической пленки параллельно оси вращения кристалла, т. е. перпендикулярно рентгеновскому лучу.
Метод Дебая — Шеррера обладает тем важным преимуществом, что позволяет изучать агрегатные массы минерала, включая скрытокристал' лические и тонкодисперсные вещества, и поэтому широко применяется в практике минералогов с целью диагностики. Рентгенограмма, называ емая обычно дебаеграммой, получается в специальной камере на полоске светочувствительной пленки, на которой после проявления видны раз личной интенсивности линии — дужки (части колец, создаваемых конуса ми рентгеновских лучей, отраженных от наиболее плотно упакованных плоскостей в кристаллических осколках растертого испытуемого вещества). Сравнивая полученную дебаеграмму (по интенсивности линий и вычис ленным межплоскостным расстояниям) с дебаеграммами других извест ных веществ, на которые похоже по внешним признакам испытуемое
1 Не следует смешивать с рентгеноструктурным анализом, задачей которого являет ся установление кристаллической структуры вещества.

102 |
Общая часть |
вещество, можно точно определить данный минерал, имея результаты спектральных исследований и хотя бы некоторые оптические константы. Достоинство этого метода заключается также в том, что для получения дебаеграммы достаточно 1 мм3 вещества в виде порошка. Это особенно важно в тех случаях, когда не удается набрать материала для полного хи мического анализа. Следует, однако, указать, что очень тонкодисперсные вещества дают слабо выраженные, завуалированные дебаеграммы, а аморф ные тела (в собственном смысле) вообще не обнаруживают отражения рентгеновских лучей.
Внастоящее время рентгенография порошка осуществляется преиму щественно методом порошковой дифрактометрии с фиксацией рассеян ного излучения счетчиком квантов, что позволяет получать результаты в виде кривых, построенных самописцем (рис. 33); чувствительность и точ ность этого метода выше, чем при фоторегистрации дифрагированного излучения, однако требуется в 5–10 раз больше вещества, чем в методе Дебая — Шеррера. Дифрактометрия порошка обеспечивает оценку пара метров кристаллической решетки минералов с высокой точностью; c по мощью этого метода можно выяснять отдельные детали кристаллическо го строения, такие как распределение атомов по позициям, т. е. успешно решать частные задачи рентгеноструктурного анализа. С использовани ем современных дифрактометров (рис. 34) удается достаточно надежно определять компоненты в полиминеральных смесях и даже оценивать их массовые соотношения (количественный рентгенофазовый анализ).
Всвязи с этим упомянем также об электронографическом методе ис следования тончайших пленок толщиной в несколько миллимикронов
Рис. 33. Дифрактограмма эвдиалита. Пики кривой соответствуют максимумам интен сивности излучения, дифрагированного на определенных семействах плоскостей решетки. Цифры у пиков выражают соответствующие межплоскостные расстояния в Е

Глава 3. О методах детальных минералогических исследований |
103 |
или чрезвычайно тонкодисперс ных коллоидных масс. Этот ме тод основан на свойстве электро нов закономерно рассеиваться при встрече с закономерно распо ложенными атомами, т. е. анало гично тому, что мы имеем для рентгеновских лучей. Разница заключается лишь в том, что рентгеновские лучи проходят вглубь кристаллического веще ства, тогда как электронный пу чок способен проникать в глуби ну всего лишь до 0,01 µ (т. е. до одной стотысячной миллиметра).
Одним из весьма эффектив ных современных вариантов электронографии является ме тод микродифракции электро'
нов, осуществляемый с примене Рис. 34. Дифрактометр нием электронного микроскопа,
работающего в специальном режиме. В комбинации с микрозондовым ана лизом микродифракция доставляет ценнейшую информацию о кристалли ческой структуре и составе мельчайших минеральных частиц микронного масштаба, что требует, однако, приготовления весьма тонких препаратов.
Резонансные методы исследования состава и структуры минералов весьма многочисленны, они включают различные виды спектроскопии вещества, среди которых особая роль в минералогии принадлежит инф ракрасной спектроскопии (ИКС), оптической спектроскопии в видимой области, а также спектроскопии электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и Мессбауэровской спек троскопии (ЯГР).
Инфракрасная спектроскопия позволяет идентифицировать минера лы по эталонным спектрам, кроме того, данный метод позволяет полу чать ценную информацию о структурном состоянии вещества — коорди нации атомов и геометрии атомных группировок, о совершенстве кристаллического строения. В ИК спектрах также отражаются размеры и особенности формы минеральных частиц, что позволяет изучать сте пень дисперсности вещества.
Оптическая спектроскопия в видимой области доставляет полезную информацию о природе, концентрации и структурном положении ионов хромофоров, что позволяет более полно изучить характер изоморфных замещений.

104 |
Общая часть |
Спектроскопия ЭПР позволяет как устанавливать наличие и поло жение в структуре атомов с неспаренными электронами (ионы группы железа и платины, редкоземельные элементы), так и определять тип и концентрацию электронно дырочных центров.
Из спектров ЯМР удается извлекать ценнейшие сведения о положе нии и состоянии протонов в структуре минералов, в то время как рентге ноструктурные методы практически не способны локализовать протон.
Мессбауэровские спектры используются для выяснения состояния атомов железа в структуре (концентрация, валентность и особенности координации).
Кристаллооптический анализ сводится к определению с помощью мик роскопа ряда оптических констант, свойственных изучаемому минералу.
Прозрачные минералы горных пород и руд исследуются в тонких шли фах (толщиной около 0,03 мм) или в виде порошков. К числу оптических констант, подлежащих определению в изучаемом минерале, относятся: по казатель преломления N (для оптически изотропных минералов) или глав ные показатели преломления Ng, Nm и Np (для анизотропных минералов), устанавливаемые с помощью специально подобранных иммерсионных жид костей или более точно на микрорефрактометре, затем двупреломление Ng–Np, оптический знак (для анизотропных минералов), угол оптических осей 2V (для анизотропных двуосных минералов) и др. Метод определения прозрачных минералов с помощью поляризационного микроскопа в прохо' дящем свете в последнее время достиг высокой степени совершенства, осо бенно для плагиоклазов, разработка методики определения которых на уни версальном столике Е. С. Федорова (рис. 35) была развита акад. А. Н. Заварицким. Этим методом могут быть точно определены даже мель
Рис. 35. Универсальный столик Е. С. Федорова
Глава 3. О методах детальных минералогических исследований |
105 |
чайшие кристаллические зерна (диаметром в несколько сотых миллимет ра), устанавливаемые в тонких прозрачных шлифах в виде включений, в чем заключается его большое достоинство. Разработаны специальные определи тели прозрачных минералов под микроскопом в виде таблиц. Они широко используются петрографами при микроскопическом изучении горных по род. Применение этого метода требует овладения работой на микроскопе и усвоения ряда специальных приемов исследования.
Непрозрачные минералы, слагающие главным образом руды месторож дений металлических полезных ископаемых, а также встречающиеся в виде включений в горных породах, изучаются в зеркально отполированных шлифах в отраженном свете под микроскопом с помощью специального осветителя, называемого опак иллюминатором. К числу оптических кон стант относятся: показатель отражения R (способность минерала отражать то или иное количество падающего света, измеряемая с помощью микро фото мегрокуляра или фотоэлемента), а для оптически анизотропных дву осных минералов — главные показатели отражения Rg, Rm и Rp, двуотра жение Rg–Rp и др. Методика определения оптических констант для анизотропных, особенно двуосных минералов еще не разработана. Тем не менее определение показателя отражения в комбинации с данными опре деления прочих свойств изучаемых под микроскопом минералов (твер дость, цвет, отношение к реактивам и др.) оказывает большую услугу при изучении руд под микроскопом в отраженном свете (минераграфия). Этим путем во многих случаях могут быть определены даже мельчайшие вклю чения рудных минералов размером в тысячные доли миллиметра.
Термический анализ, введенный в практику исследований акад. Н. С. Курнаковым, сводится к получению кривых нагревания (или охлаж дения) вещества с целью установления эндо и экзотермических эффек тов, обусловливаемых физическими и химическими превращениями, происходящими в исследуемом веществе при повышении температуры (выделение воды, окисление, восстановление, переход в новую полиморф ную модификацию и др.).
В минералогической практике этот метод обычно применяется при исследовании трудно определимых на глаз (или другими способами) скрытокристаллических и тонкодисперсных масс. Для ряда минеральных образований (каолина, гидратов глинозема, гидроокислов железа, карбо натов, хлоритов и др.) получаются характерные кривые нагревания, спо собствующие определению минеральных видов.
Необходимо отметить, что само число минералов, для которых этим методом удается получить какие либо характерные данные, имеющие диагностическое значение, составляет относительно небольшой процент от числа известных в природе минералов. К ним преимущественно отно сятся химические соединения, содержащие воду, гидроксил и углекисло ту. Затем этим методом удается узнать природу лишь основной массы

106 |
Общая часть |
исследуемого вещества. Механические примеси, которые нас в большин стве случаев интересуют в испытуемых минеральных массах, при содер жании их до 5–10 % за некоторыми исключениями не устанавливаются.
С другой стороны, в ряде случаев при изучении минеральных веществ возникает необходимость более полного познания их свойств, особенно когда эти вещества приобретают практическое значение. Бывает важно точно знать, что происходит с данным веществом при нагревании. Для этой цели получение только кривых нагревания является недостаточным. Продукты, получающиеся в результате каждого установленного превра щения вещества, требуют химического анализа, изучения оптических свойств и рентгенометрических исследований.
Важно точно знать температуры, при которых происходят эти превра щения. Последнему требованию термограммы, как выяснилось, не все гда удовлетворяют: регистрация этих превращений самопишущими при борами обычно запаздывает, причем разница достигает 60–100 °С и больше. В этом отношении для минералов, содержащих воду и гидроксил, гораздо более точные данные можно получить из кривых дегидратации (обезвоживания) минералов при нагревании. Для этой цели испытуемое вещество в количестве 1–2 г или более, предварительно взвешенное вме сте с платиновым тиглем, выдерживается в электрической печи последо вательно при определенных температурах (с интервалом обычно 50 °С) до тех пор, пока потеря веса по сравнению с предыдущим взвешиванием не станет меньше 0,03–0,05 %, и только после этого температура печи по вышается на следующую ступень. Полученные таким путем кривые по тери воды дают ясное представление о том, при каких температурах на ступают превращения в веществе.
На рисунке 36 приведены две кривые обезвоживания:каолинита—Al4[Si4O10][OH]8 и галлуазита — Al4[Si4O10][OH]8 . 4H2O. В то время как для каолинита (кривая I), не содержащего воды, а только гидро ксильные группы ОН, сильные измене ния происходят в интервале температур 500–550°, в галлуазите (кривая II) молеку лы кристаллизационной воды выделяют ся до 150 °С (первый скачок кривой), а гид роксильные группы — при температуре 450–500 °С (второй, высокий скачок кри вой вверх). Как установлено рентгеномет рическими исследованиями, с потерей гидроксильных ионов кристаллические
Рис. 36. Кривые обезвоживания решетки этих минераловразрушаются,по
каолинита (I) и галлуазита (II)
казатель преломления сильно падает.
Глава 3. О методах детальных минералогических исследований |
107 |
Химический анализ (классический, или «мокрый», анализ) является сравнительно трудоемким и дорогим методом исследования. Поэтому к пол ным химическим анализам прибегают в тех случаях, когда имеются основа ния полагать, что будет установлена какая либо новая разновидность или новый минерал, по ряду свойств отличающийся от известных минералов; либо когда без данных химического анализа невозможно решить вопрос о разновидности изучаемого минерала, обладающего переменным составом; либо в тех случаях, когда минерал принадлежит к числу редких соединений, для которых известно ограниченное число полных анализов, и т. д.
Количество чистого, т. е. освобожденного от примесей вещества, необ ходимое для полного химического анализа, должно составлять минимум 1–2 г, что не всегда удается набрать, особенно для редко встречающихся и рассеянных в породе или руде мелких кристалликов или зерен минерала.
Если исследуемый минерал наблюдается в виде мелких кристалличе ских друз в пустотках, то его обычно предварительно отбирают каким либо способом, например с помощью стальной иглы, всаженной в деревянную ручку. Полученную таким путем массу тщательно сортируют под биноку лярной лупой с помощью той же иглы, отбирая интересующий нас мине рал в необходимом количестве для химического анализа и других видов исследований. Если минерал наблюдается вкрапленным в породу в значи тельном количестве, то породу в целом подвергают дроблению и измель чению, отсеивая каждый раз мелочь через сито с отверстиями 0,5, 1,0 мм или крупнее (в зависимости от размеров зерен вкрапленного минерала). Отбор минерала тем же способом производится под бинокулярной лупой.
В случае если минерал является акцессорным, т. е. крайне редко вкрап ленным в породу, приходится прибегать к получению концентратов тем или иным механическим способом. При этом используется либо разница
вудельных весах минералов (гравитационные методы) или в магнитных свойствах (методы магнитной сепарации), либо отношение минералов к флотационным реагентам (методы флотации) или к электричеству (элек тростатические методы) и т. д.
Из многочисленных гравитационных методов обогащения самым про стым является разделение зерен минералов в тяжелых или вязких жид костях (йодистый метилен, бромоформ, жидкость Туле и др.). В случае больших масс очень удобными для этой цели являются лабораторные гидравлические классификаторы со спирально восходящей струей воды
встеклянной цилиндрической трубке, а также лабораторные небольшие столы типа концентрационных столов Вильфли или др. Для работы на этих приборах измельченный материал должен быть предварительно рас пределен на соответствующие классы по крупности зерна с помощью специально подобранных сит. Для тяжелых минералов той же цели, но
вболее грубом виде, можно достигнуть также путем промывки дробленого материала в старательском ковше или лотке.

108 |
Общая часть |
В тех случаях, когда приходится изучать состав землистых тонкодис персных масс, прибегают к отмучиванию в стеклянных банках или к раз делению на фракции по удельным весам с помощью центрифуги в жид ких или вязких средах.
Подготовленный для химического анализа материал предварительно должен подвергнуться спектральному анализу, если тот не был произве ден ранее. Этот анализ необходим для того, чтобы знать, какие химиче ские элементы вообще содержатся в минерале и какие из них могут быть определены при химическом анализе. Следует заметить, что эти опреде ления с помощью спектрографа производятся быстро и притом в некото рых количественных соотношениях для элементов. Это важно знать, прежде чем начинать химический анализ.
Современный химический анализ не ограничивается классическими методами аналитической химии (весовые методы, колориметрия, титро вание), широко применяются также и методы фотометрии пламени, атом ной абсорбции, спектроскопии индуктивно возбужденной плазмы и др.
Данные полного химического анализа, выраженные в весовых про центах, необходимо пересчитать на атомные (молекулярные) количе ства, с тем чтобы можно было вывести химическую формулу минерала. С этой целью данные весовых количеств каждого элемента (окисла) делят на его атомный вес («молекулярный вес» окисла)1. Полученные числа должны показывать, в каком отношении находятся данные эле менты (или окислы), входящие в состав минерала. Необходимо указать, что соотношения компонентов, вычисляемые по данным химических анализов, никогда не бывают строго кратными ввиду или недостаточно высокой точности самих анализов, или других причин. Приведем для иллюстрации два примера.
Пример 1. Данные химического анализа бурнонита из Нагольного кряжа:
|
% по весу |
Атомный вес |
Атомное |
Отношение |
|
|
|
количество |
|
Pb |
42,75 |
207,2 |
0,204 |
1 |
Cu |
12,77 |
63,6 |
0,201 |
1 |
Sb |
24,76 |
121,8 |
0,206 |
1 |
S |
19,40 |
32,0 |
0,606 |
3 |
_____________ |
|
|
|
|
Сумма |
99,68 |
|
|
|
Таким образом, химическая формула минерала должна выразиться в виде
PbCuSbS3.
1 Атомные веса берутся то таблице Менделеева. Молекулярный вес окисла составля ется из суммы атомных весов элементов; например, для SiO2 он равен 28,1 + 2 ×16,0 = 60,1.
Глава 3. О методах детальных минералогических исследований |
109 |
Пример 2. Данные химического анализа родонита из месторождения
Кызыл Таш (Ю. Урал): |
|
|
|
|
|
% по весу |
Мол. вес |
Мол. кол. |
Отношение |
SiO2 |
46,06 |
60,1 |
0,767 |
1 |
Al2O3 |
0,11 |
101,9 |
0,001 |
— |
Fe2O3 |
Нет |
— |
— |
— |
FeO |
1,83 |
71,8 |
0,025 |
|
MnO |
44,76 |
70,9 |
0,630 |
1 |
CaO |
6,59 |
56,1 |
0,117 |
|
___________ |
|
|
|
|
Сумма |
99,35 |
|
|
|
Химическая формула этого минерала может в самом общем виде быть выражена в виде (Mn, Ca) O . SiO2 или (Mn, Ca)SiO3. При переходе к эмпири' ческой кристаллохимической формуле, исходя из пяти атомов кремния в ани онном радикале и пренебрегая ничтожным содержанием алюминия, получа ем следующий результат, который относится не к родониту вообще как минеральному виду, а непосредственно к исследованному материалу:
(Mn4,10Ca0,76Fe2+0,16)5,02 [Si5O15].
Полученная эмпирическая формула указывает на некоторый избыток в катионной части, который, скорее всего, связан с погрешностями анализа или с присутствием примесей других минералов, а не с отклонением состава
изученного образца родонита от требуемого правилами стехиометрии.
Бывают случаи, когда не удается отобрать для химического анализа совершенно свободный от посторонних примесей минерал. Тогда при рас чете данных химического анализа, если количество посторонней приме си невелико и ее минералогическая природа установлена, приходится вычислять состав интересующего нас минерала приблизительно, сообра зуясь с микроскопическими данными исследований. Если же примеси присутствуют в больших количествах, то в этом случае пересчеты на ми неральный состав могут быть не всегда правильными.
Пересчет результатов химического анализа на кристаллохимическую формулу является задачей, требующей особого искусства и не всегда под дающейся применению стандартных рецептов. Следует учитывать спе цифику состава изучаемого минерала, нередко — комбинировать различ ные способы пересчета и выбирать наилучший; кроме того, необходимо воздерживаться от восприятия результатов, предоставленных минерало гу химиком аналитиком, как абсолютных, непогрешимо достоверных величин, лишенных каких бы то ни было ошибок.
Невозможность точного учета неоднородности анализируемого мине рала, реализующейся как в виде зонального распределения изоморфных примесей, так и в наличии посторонних минеральных и иных микровклю чений, которые никогда не удается полностью удалить при отборе мате риала, является практически неустранимой особенностью классического химического анализа, не входящей в число его достоинств.
110 |
Общая часть |
Спектральный анализ в практике минералогических исследований стал применяться настолько широко, что во многих случаях заменяет метод паяльной трубки, особенно в лабораторных условиях. Этот метод определения присутствующих в минерале химических элементов осно ван, как известно, на том, что каждый химический элемент при достаточ ном нагревании испускает лучи определенных, характерных для него длин волн, устанавливаемые с помощью спектроскопа. Главными преимуще ствами спектрального анализа являются точность и быстрота определе ния содержащихся в минерале катионов металлов. Особенно это имеет значение при определении таких ценных редких металлов, как молибден, индий, германий, галлий, кадмий и др. Более того, для ряда металлов раз работана методика определения примерного количественного значения содержания. Количество материала, требующееся для анализа, может быть ограничено несколькими миллиграммами. В этом также заключа ется важное достоинство метода. Спектральный анализ все таки остает ся в лучшем случае полуколичественным методом, однако минимальные определяемые количества элементов (порог обнаружения) могут быть на столько малыми, что альтернативы у этого метода, особенно в геохимии, пока нет, за исключением очень дорогого и трудоемкого масс'спектро' метрического анализа.
Рентгеноспектральный (микрозондовый) анализ основан на том, что испытуемое вещество, помещенное на поверхность антикатода, при дей ствии катодных лучей (потока электронов) испускает рентгеновские лучи определенной длины волны для каждого из содержащихся в нем хими ческих элементов, т. е. аналогично тому, что мы имеем при обычном спек тральном анализе. Важно лишь, чтобы напряжение, приложенное к элек тродам рентгеновской трубки, было достаточным для возбуждения лучей, характерных для того или иного элемента. Рентгеноспектральный ана лиз особенно ценен при количественном определении в минералах ред ких земель Y, Nb, Та, Hf, Re, определение которых обычными химически ми методами составляет чрезвычайно трудоемкую задачу.
С 60 х гг. XX в. техника микрозондового анализа постоянно совершен ствовалась и к настоящему времени развилась в такой степени, что в иссле довании химического состава минералов этому методу практически нет рав ных, хотя и он не лишен недостатков, сводящихся главным образом к невозможности определения элементов с атомным номером 4 и меньше; точ ность определения элементов с номером от 5 до 9 также оставляет желать лучшего. В остальных отношениях методика является превосходной, осо бенно благодаря экспрессности и высокому пространственному разрешению.
Определение содержания элементов проводится в приполированных препаратах с напыленным слоем проводящего вещества (графит, золо то). Препарат, представленный чаще всего множеством зерен, заключен ных в «шашку» из эпоксидной смолы, помещается в колонну, по уст