
- •Общая энергетика.
- •Современные способы получения электрической энергии.
- •1.1. Тепловые конденсационные электрические станции.
- •1.2. Теплоэлектроцентрали.
- •1.3. Газотурбинные установки
- •1.4. Парогазовые установки
- •1.5. Гидравлические электрические станции.
- •1.6. Аккумулирующие электрические станции
- •1.7. Приливные электрические станции
- •1.8. Магнитогидродинамическое преобразование энергии
- •1.9. Геотермальные электростанции
- •1.10. Ветровые электростанции
- •1.11. Класификация электрических станций.
- •1.12. Солнечные электростанции
- •1.13. Использование морских возобновляемых ресурсов
- •Тепловые электрические станции и их технологическая схема.
- •Термодинамический цикл паротурбинных электростанций.
- •2.2. Способы производства электрической и тепловой энергии.
- •2.3.Принципиальная технологическая схема тэц
- •2.5. Двухвальные турбоагрегаты.
- •3. Производство пара на электрической станции.
- •3.1. Место и значение парового котла в системе электростанции
- •3.2. Классификация паровых котлов
- •3.3. Технологическая схема производства пара
- •3.4. Основные характеристики паровых котлов
- •4. Котельные установки.
- •4.1. Паровой котел и его основные элементы
- •4.2. Поверхности нагрева парового котла
- •4.3. Конструкции отечественных паровых котлов.
- •4.4. Тепловой баланс парового котла.
- •5. Паровые и газовые турбины.
- •5.1. Действие рабочего тела на лопатки
- •5.2. Активные турбины
- •5.3. Реактивные турбины
- •5.4. Мощность и кпд турбины
- •5.5. Классификация турбин
- •5.6. Конденсационные устройства паровых турбин
- •5.7. Газотурбинные установки (гту)
- •5.8. Турборасширительные машины
- •6. Технологические схемы аэс
- •6.1. Аэс с водо-водяными энергетическими реакторами
- •6.2. Аэс с канальными водографитовыми кипящими реакторами
- •6.3. Аэс с реакторами на быстрых нейтронах
- •7 Повышение эффективности использования топливно-энергетических ресурсов.
- •7.1. Основные способы организации энергосберегающих технологий.
- •7.2. Утилизация вторичных (побочных) энергоресурсов (вэр)
- •8. Типы гидроэнергетических установок и схемы использования водной энергии
- •8.1. Типы гидроэнергетических установок.
- •8.2. Напор, расход и мощность гидроэнергетических установок
- •8.3. Основные схемы использования водной энергии
- •8.4. Особые схемы использования водных ресурсов
- •8.5. Схемы насосного аккумулирования энергии
- •8.6. Схемы использования энергии приливов
- •9. Гидравлические турбины.
- •9.1. Классификация гидротурбин
- •9.2. Активные гидротурбины.
- •9.3. Реактивные гидротурбины
- •9.4. Основные элементы проточного тракта реактивных гидротурбин
- •9.5. Кавитация
- •Гидроэлектростанции и основы использования водной энергии.
- •10.1. Состав и компоновка основных сооружений гэс
- •10.3. Здания гэс.
- •10.4. Водохранилище, нижний бьеф и их характеристики.
- •10.5. Регулирование речного стока водохранилищами гэс.
- •10.6. Каскадное и комплексное использование водных ресурсов.
1.13. Использование морских возобновляемых ресурсов
Ресурсы морей и океанов можно разбить на три группы:
вертикальные термоградиенты и океанические ветры;
морская биомасса и геотермальные воды;
поверхностные волны, течения и перепады солености.
Предполагают, что использование ресурсов первой группы может начаться в конце 80-х годов, второй — в 90-х, а третьей не ранее 2000-го года.
Мощности и стоимости различных потенциальных источников энергии приведены в табл.
Источники энергии |
Мощность, мил. кВт |
Стоимость производства электроэнергии цент/(кВт*ч) |
Вертикальные термоградиенты Поверхностные волны Морские течения Океанские ветры Перепады солености Топливная биомасса Геотермальные воды |
10000 500 60 170 3500 770 3000 |
4-7 11-24 13-32 5-9 14-29 11-15 25-30 |
Приведенные показатели свидетельствуют о большой стоимости «энергии будущего». В самом деле, если считать, что электроэнергия, полученная на основе нефти, угля или урана, стоит в среднем 3—б центов за 1 кВт-ч, то энергия вертикальных термоградиентов и океанских ветров будет в 1,5—2 раза дороже. Остальные виды энергии будут дороже в 4—6 раз.
Из указанных возможных энергий океана пока наиболее ясно использование вертикальных термоградиентов. На рис. 3.15 показана работа так называемой «закрытой» системы. Насос обеспечивает циркуляцию аммиака, имеющего очень низкую температуру кипения, в замкнутом контуре. Теплая океаническая вода нагревает аммиак (верхняя часть схемы), который переходит
в
газообразное состояние и в
этом виде поступает на турбину,
где он расширяется
и приводит в действие генератор.
С турбины аммиак
выходит с пониженной температурой
и при меньшем
давлении и пропускается через
теплообменник, использующий
холодную воду; газ
сжижается, и цикл повторяется.
В «открытой» системе
в ^качестве рабочего тела используется
морская вода;
ее температура кипения
снижается в вакуумной камере,
где поддерживается давление
на уровне 3,5% от
нормального атмосферного.
Рассматривая возможные способы преобразования энергии, необходимо учитывать, что в соответствии с законами физики все энергетические процессы сводятся к трансформации одного вида энергии в другой. Здесь важно то обстоятельство, что плотности потоков энергии ограничиваются физическими свойствами среды. Это, в свою очередь, практически исключает применение в энергетике больших мощностей многих казалось бы эффективных процессов трансформации энергии. Например, в топливных элементах химическая энергия окисления водорода непосредственно превращается в электрическую. Такой способ получения электрической энергии, несмотря на очень высокий КПД, равный примерно 70%, на сегодня приходится признать непригодным для промышленности из-за малой скорости диффузионных процессов в электролите и, следовательно, малой плотности энергии. Так, с 1 м* электрода можно получить не более 200 Вт мощности. А это означает, что при генерировании 100 МВт мощности рабочая площадь электродов должна быть примерно 1 км2, что, конечно, практически нереализуемо. Из-за малой плотности потока энергии неперспективным представляется применение в энергетике и прямого преобразования химической энергии в механическую. Такое преобразование происходит с высоким КПД в мускулах животных. Механизм его достаточно глубоко пока не изучен. Но даже если предположить, что такое преобразование энергии будет воспроизведено искусственно, то оно, видимо, не сможет найти применение в энергетике из-за малой плотности потока энергии, которая не может быть больше, чем у топливных элементов: