
- •Реферат
- •Содержание
- •Введение
- •1. Развитие подводных волоконно-оптических систем связи
- •1.1 История оптоволоконной системы связи в мире
- •1.2 Определение подводной волоконно-оптической системы связи
- •1.3 Виды подводных волс
- •2. Подводные оптические системы передачи
- •2.1 Подводные оптические сети передачи в мире
- •2.2 Российские подводные волс
- •2.3 Необходимость организации подводной системы связи на Дальнем Востоке
- •2.4 О компаниях Ростелеком и Хуавей
- •2.5 Этапы строительства пволс «Сахалин-Магадан-Камчатка»
- •2.6 Планирование, проработка и прокладка подводных волоконно-оптических линий связи
- •2.7. Энергетическое оборудование для пволс
- •2.8. Подводные волоконно-оптические кабели
- •2.9 Подводные оптические усилители
- •3. Технологии, используемые в пвосп
- •3.1 Пропускная способность подводной сети связи «Сахалин-Магадан-Камчатка»
- •3.1.1 Технология sdh
- •3.1.2 Технология wdm
- •3.1.3 Технология dwdm
- •3.2 Типы оптических волокон
- •3.2.1 Оптическое волокно типа nzds
- •Заключение
- •Список литературы
3.1.1 Технология sdh
Основные элементы системы передачи данных на основе SDH, или функциональные модули SDH могут быть связаны между собой в сеть SDH. Логика работы или взаимодействия модулей в сети определяет необходимые функциональные связи модулей - топологию, или архитектуру сети SDH.
Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяется основными функциональными задачами, решаемыми сетью:
сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH - задача мультиплексирования, решаемая терминальными мультиплексорами сети доступа;
транспортировка агрегатных блоков по сети с возможностью ввода/вывода входных/выходных потоков - задача транспортирования, решаемая мультиплексорами ввода/вывода, логически управляющими информационным потоком в сети, а физически - потоком в физической среде, формирующей в этой сети транспортный канал;
перегрузка виртуальных контейнеров в соответствии со схемой маршрутизации из одного семента сети в другой, осуществляемая в выделенных узлах сети, - задача коммутации, или кросс-коммутации, решаемая с помощью цифровых коммутаторов или кросс-коммутаторов;
объединение нескольких однотипных потоков в распределительный узел - концентратор - задача концентрации, решаемая концентраторами;
восстановление (регенерация) формы и амплитуды сигнала, передаваемого на большие расстояния, для компенсации его затухания - задача регенерации, решаемая с помощью регенераторов;
сопряжение сети пользователя с сетью SDH - задача сопряжения, решаемая с помощью оконечного оборудования - различных согласующих, устройств, например, конверторов интерфейсов, конверторов скоростей, конверторов импедансов и т.д.
Структура сигналов SDH. Это синхронный транспортный модуль STM-N, где N определяется уровнем SDH. В настоящее время широко используются системы STM-1, STM-4, STM-16 и STM-64, STM-264. Системы построены с кратностью 4. Таким образом, сформировалась следующая иерархия скоростей. (Рис.19)
Рис. 19. Иерархия скоростей SDH
Базовым уровнем SDH является STM-1. Он характеризуется своим циклом с периодом повторения 125 мкс. Общепринято рассматривать цикл в виде прямоугольной таблицы, хотя данные передаются по линии последовательно. Цикл STM-1 содержит 9 строк по 270 байт (2430 байт). Первые 9 байт в каждой строке образуют заголовок цикла. (Рис.20)
Рис.
20. Цикл STM-1
К преимуществам SDH следует отнести модульную структуру сигнала, когда скорость уплотненного сигнала получается путем умножения базовой скорости на целое число. При этом структура цикла не меняется и не требуется формирование нового цикла. Это позволяет выделять требуемые каналы из уплотненного сигнала без демультиплексирования всего сигнала.
3.1.2 Технология wdm
WDM (частотное разделение каналов) - технология, позволяющая одновременно передавать несколько информационных каналов по одному оптическому волокну на разных несущих частотах. В российском телекоме системы передачи, созданные с помощью технологии WDM, называют «системы уплотнения». На данный момент существуют три типа WDM-систем: 1. CWDM (грубое частотное разделение каналов) —системы с разносом оптических несущих на 20 нм (2500 ГГц). Рабочий диапазон 1261-1611 нм, в котором можно реализовать до 18 симплексных каналов. Стандарт МСЭ G.694.2. 2. DWDM (плотное частотное разделение каналов) — системы с разносом оптических несущих на 0,8 нм (100 ГГц). Существуют два рабочих диапазона — 1525-1565 нм и 1570-1610 нм, в которых можно реализовать до 44 симплексных каналов. Стандарт МСЭ G.694.1. 3. HDWDM (высокоплотное частотное разделение каналов) — системы с разносом оптических несущих на 0,4 нм (50 ГГц) и менее. Возможна реализация до 80 симплексных каналов.