
- •4 Колебания и волны
- •Глава 18
- •§ 140. Гармоническиt колебания и их характеристики
- •§ 141. Механические гармонические колебания
- •§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- •1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругойпружине и совершающий гармонические колебания под действием упругой силы
- •§ 143. Свободные гармонические колебания в колебательном контуре
- •§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •§ 145. Сложение взаимно перпендикулярных колебаний
- •1).В данном случае эллипс вырождается в отрезок прямой
- •2)В данном случае уравнение примет вид
- •§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- •§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- •§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- •§ 149. Переменный ток
- •2. Переменный ток, текущий через катушку индуктивностью
- •§ 150. Резонанс напряжений
- •§ 151. Резонанс токов
- •§ 152. Мощность, выделяемая в цепи переменного тока
- •Глава 19 Упругие волны
- •§ 153. Волновые процессы. Продольные и поперечные волны
- •§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •§ 155. Принцип суперпозиции. Групповая скорость
- •§ 156. Интерференция волн
- •§ 157. Стоячие волны
- •§ 158. Звуковые волны
- •§ 159. Эффект Доплера в акустике
- •2. Приемник приближается к источнику, а источник покоится, т. Е.
- •§ 160. Ультразвук и его применение
- •Глава 20 Электромагнитные волны
- •§ 161. Экспериментальное получение электромагнитных волн
- •§ 162. Дифференциальное уравнение электромагнитной волны
- •§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- •§ 164. Излучение диполя. Применение электромагнитных волн
- •§ 166. Тонкие линзы. Изображение предметов с помощью линз
- •§ 167. Аберрации (погрешности) оптических систем
- •§ 168. Основные фотометрические величины и их единицы
- •§ 169. Элементы электронной оптики
- •Глава 22 Интерференция света
- •§ 170. Развитие представлений о природе света
- •§ 171. Когерентность и монохроматичность световых волн
- •§ 172. Интерференция света
- •§ 173. Методы наблюдения интерференции света
- •§ 174. Интерференция света в тонких пленках
- •1. Полосы равного наклона (интерференция от плоскопараллельной пластинки). Из
- •§ 175. Применение интерференции света
- •Глава 23 Дифракция света
- •§ 176. Принцип Гюйгенса — Френеля
- •§ 177. Метод зон Френеля. Прямолинейное распространение света
- •§ 178. Дифракция Френеля на круглом отверстии и диске
- •§ 179. Дифракция Фраунгофера на одной щели
- •§ 180. Дифракция Фраунгофера на дифракционной решетке
- •§ 181. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •§ 183. Разрешающая способность оптических приборов
- •§ 184. Понятие о голографии
- •Глава 24
- •§ 185. Дисперсия света
- •§ 186. Электронная теория дисперсии света
- •§ 187. Поглощение (абсорбция) света
- •§ 188. Эффект Доплера
- •§ 189. Излучение Вавилова — Черенкова
- •Глава 25 Поляризация света
- •§ 190. Естественный и поляризованный свет
- •§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •§ 192. Двойное лучепреломление
- •§ 193. Поляризационные призмы и поляроиды
- •§ 194. Анализ поляризованного света
- •§ 195. Искусственная оптическая анизотропия
- •§ 196. Вращение плоскости поляризации
- •Глава 26 Квантовая природа излучения
- •§ 197. Тепловое излучение и его характеристики
- •§ 198. Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •§ 200. Формулы Рэлея — Джинса и Планка
- •§ 201. Оптическая пирометрия. Тепловые источники света
- •§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •§ 204. Применение фотоэффекта
- •§ 205. Масса и импульс фотона. Давление света
- •§ 206. Эффект Комптона и его элементарная теория
- •§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
§ 178. Дифракция Френеля на круглом отверстии и диске
Рассмотрим дифракцию в сходящихся лучах, или дифракцию Френеля, осуществляемую в том случае, когда дифракционная картина наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию.
1.
Дифракция на круглом отверстии.
Сферическая волна, распространяющаяся
из точечного источника S,
встречает
на своем пути экран с круглым отверстием.
Дифракционную
картину наблюдаем на экране Э в точке
В,
лежащей
на линии, соединяющей S
с
центром отверстия (рис. 259). Экран
параллелен плоскости отверстия и
находится от
него на расстоянииРазобьем
открытую часть волновой поверхности
Ф на зоныФренеля.
Вид дифракционной картины зависит от
числа зон Френеля, открываемых отверстием.
Амплитуда результирующего колебания,
возбуждаемого в точке В
всеми
зонами
(см. (177.1) и (177.6)),
где знак плюс соответствует нечетным т и минус — четным т.
Когда
отверстие открывает нечетное число
зон Френеля, то амплитуда (интенсивность)
в точке В
будет
больше, чем при свободном распространении
волны; если четное,
то амплитуда (интенсивность) будет
равна нулю. Если отверстие открывает
одну
зону Френеля, то в точке В
амплитуда,
т. е. вдвое больше, чем в отсутствие
непрозрачного экрана с отверстием (см. § 177). Интенсивность света больше соответст-
335
венно в четыре раза. Если отверстие открывает две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если т нечетное — то светлое кольцо), причем интенсивность в максимумах убывает с расстоянием от центра картины.
Расчет амплитуды результирующего колебания на внеосевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены.
Число
зон Френеля, открываемых отверстием,
зависит от его диаметра. Если он большой,
тои
результирующая амплитуда
т.
с. такая же, как и при
полностью открытом волновом фронте. Никакой дифракционной картины не наблюдается, свет распространяется, как и в отсутствие круглого отверстия, прямолинейно.
2. Дифракция на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром диска (рис. 260). В данном случае закрытый диском участок волнового фронта надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает т первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна
так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами, а интенсивность в максимумах убывает с расстоянием от центра картины.
С
увеличением радиуса диска первая
открытая зона Френеля удаляется от
точки
В
и
увеличивается угол(см.
рис. 258) между нормалью к поверхности
этойзоны
и направлением на точку В.
В
результате интенсивность центрального
максимума с
увеличением размеров диска уменьшается.
При больших размерах диска за ним
наблюдается тень, вблизи границ которой
имеет место весьма слабая дифракционная
картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно.
Отметим, что дифракция на круглом отверстии и дифракция на диске впервые рассмотрены Френелем.