
- •1)Биология – теоретическая основа медицины. Методы исследования и этапы развития биологии.
- •2.Свойства и особенности живого. Его качественные отличия от неживого. Дать определение, что такое жизнь. Уровни организации живого
- •3.Прокариоты и эукариоты. Клеточная теория, ее история и современное понимание. Значение клеточной теории для биологии и медицины.
- •4.Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика.
- •5.Клеточная мембрана, ее структурная организация, функции клеточной мембраны.
- •6. Цитоплазма клетки, ее составные части и назначение
- •10. Химический состав клетки (белки, их структура и функции).
- •11. Нуклеиновые кислоты, их строение, локализация, значение
- •13. Строение и функции днк. Механизмы редупликации днк. Биологическое значение. Генетический код, ее структурная организация и свойства
- •14. Биосинтез белка.
- •15. Ядро, его строение и функции
- •16. Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе, кариограмма
- •17. Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение.
- •18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.
- •21. Митотический цикл клетки. Характеристика периодов. Митоз, его биологическое значение. Амитоз
- •22. Мейоз. Особенности первого и второго деления мейоза. Биоло-гическое значение. Отличие мейоза от митоза.
- •23. Размножение, как основное свойство живого. Бесполое и половое размножение. Формы бесполого и полового размножения. Определение, сущность, биологическое значение.
- •24. Онтогенез и его периодизация. Прямое и непрямое развитие.
- •25. Сперматогенез, фазы и превращение клеток. Биологическое значение полового размножения.
- •26. Овогенез. Особенности формирования женских гамет.
- •28. Понятие об основных этапах эмбрионального развития (дробление, гаструляция, образование тканей и органов). Механизмы цитоорганогенеза у человека.
- •29. Постэмбриональное развитие. Виды действия алкоголя и никотина на организм человека.
- •30. Старость и старение.Смерть как биологическое явление.
- •31. Общее понятие о гомеостазе.
- •32.Регенерация как проявление структурного гомеостаза.
- •34. Формы взаимосвязей между организмами в природе. Симбиоз, деление на группы. Паразитизм, как биологический феномен. Примеры.
- •35. Основные понятия паразитологии. Система паразит – хозяин. Учения о трансмиссивных заболеваниях. Примеры.
- •36. Простейшие. Латинские названия. Классификация, дать русские и латинские названия. Характерные черты организации. Значение для медицины.
- •37 Размножение у простейших. Конъюгация и копуляция.
- •38. Класс Споровики. Малярийный плазмодий. Систематика, морфология, цикл развития, видовые различия. Борьба с малярией. Задачи противомалярийной службы на современном этапе.
- •39. Саркодовые. Основные представители. Назвать по русски и по латыни. Дизентерийная амеба. Морфология, цикл развития, лабораторная диагностика, профилактика.
- •43. Кошачий сосальщик. Патогенез. Систематика, морфология, цикл развития, пути заражения. Лабораторная диагностика и профилактика. Очаги описторхоза в снг.
- •44. Плоские черви. Морфология, систематика, основные представители, значение. Латинские и русские названия их и заболевания, вызываемые ими.
- •46. Бычий цепень. Патогенез. Систематическое положение, морфология, цикл развития. Пути заражения, лабораторная диагностика болезни, профилактика.
- •47. Эхинококк. Патогенез. Систематическое положение, морфология, цикл развития. Лабораторная диагностика, пути заражения, профилактика.
- •48. Альвеококк. Патогенез. Систематическое положение, морфология, цикл развития. Лабораторная диагностика, пути заражения, профилактика.
- •72. Общие закономерности филогенеза головного мозга позвоночных животных.
17. Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение.
Синтез веществ, идущий в клетке, называют биологическим синтезомили сокращенно биосинтезом.
Все реакции биосинтеза идут с поглощением энергии.
Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией(лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.
Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО2и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.
Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.
Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.
Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.
Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называютобменом веществ и энергии.Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.
18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.
19. Обмен веществ и энергии в клетке. Фотосинтез, хемосинтез. Процесс ассимиляции (основные реакции). Обмен веществ представляет собой единство ассимиляции и диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Фотосинтез-это процесс превращения энергии солнечного света в энергию химических соединений. Фотосинтез-это процесс образования органических веществ(глюкозы,а затем крахмала)из неорганических веществ, в хлоропластах на свету с выделением кислорода. Протекает фотосинтез в 2 фазы: световая и теневая. Световая фаза протекает на свету. Во время световой фазы происходит возбуждение хлорофилла путем поглощения кванта света. В световой фазе происходит фотолиз воды с последующим выделением кислорода в атмосферу. Кроме того, в световой фазе фотосинтеза протекают следующие процессы: накопление протонов водорода, синтез АТФ из АДФ, присоединение H+ к специальному переносчику НАДФ
ИТОГ СВЕТОВОЙ РЕАКЦИИ:
Образование АТФ и НАДФ*H, выделение O2 в атмосферу.
Темновая фаза (цикл фиксации CO2, цикл Кальвина) протекает в строме хлоропласта. В темновой фазе происходит следующие процессы
Из световой реакции берется АТФ и НАДФ*H
Из атмосферы - CO2
1)Фиксация CO2
2)Образование глюкозы
3)Образование крахмала
ИТОГОВОЕ УРАВНЕНИЕ:
6CO2+6H2O---(хлорофилл,свет)—С6H12O6+6O2
Хемосинтез – синтез органических веществ за счет энергии химических реакций. Хемосинтез осуществляется бактериями Основные реакции фотосинтеза: 1) окисление серы: 2H2S + O2 = 2H20 + 2S
2S + O2 + 2H2O = 2H2SO4 2) окисление азота: 2NH3 + 3O2 = 2HNO2 + 2H2O 2HNO2 + O2 = HNO3 3) окисление кислорода 2H2 + O2 = 2H2O 4) окисление железа: 4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2
20. Обмен веществ в клетке. Процесс диссимиляции. Основные этапы энергетического обмена. Обмен веществ представляет собой единство ассимиляции и диссимиляции. при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся Все функции, выполняемы клеткой, требуют затрат энергии, которая освобождается в процессе диссимиляции. Биологическое значение диссимиляции сводится не только к освобождению энергии, потребной клетке, но нередко и к разрушению веществ, вредных для организма Весь процесс диссимиляции, или энергетического обмена, состоит из 3 этапов: подготовительный, бескислородный и кислородный. В подготовительном этапе под действием ферментов происходит расщепление полимеров до мономеров. Так, белки расщепляются до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. В подготовительном этапе выделяется мало энергии и рассеивается обычно в виде тепла. 2) Бескислородный или анаэробный этап. Разберем на примере глюкозы. В анаэробном этапе происходит распад глюкозы до молочной кислоты: С6H12O6 + 2АДФ + Н3РО4 = 2C3H6O3 + 2Н2О + 2АТФ (молочная к-та) 3) Кислородный этап. При кислородном этапе вещества окисляются до СО2 и Н2О. При доступе кислорода пировиноградная кислота проникает в митохондрии и подвергается окислению: С3H6O3+6O2—6CO2+6H2O+36АТФ Суммарное уравнение: C6H12O6+6O2—6CO2+6H2O+38АТФ