
- •1)Биология – теоретическая основа медицины. Методы исследования и этапы развития биологии.
- •2.Свойства и особенности живого. Его качественные отличия от неживого. Дать определение, что такое жизнь. Уровни организации живого
- •3.Прокариоты и эукариоты. Клеточная теория, ее история и современное понимание. Значение клеточной теории для биологии и медицины.
- •4.Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика.
- •5.Клеточная мембрана, ее структурная организация, функции клеточной мембраны.
- •6. Цитоплазма клетки, ее составные части и назначение
- •10. Химический состав клетки (белки, их структура и функции).
- •11. Нуклеиновые кислоты, их строение, локализация, значение
- •13. Строение и функции днк. Механизмы редупликации днк. Биологическое значение. Генетический код, ее структурная организация и свойства
- •14. Биосинтез белка.
- •15. Ядро, его строение и функции
- •16. Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе, кариограмма
- •17. Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение.
- •18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.
- •21. Митотический цикл клетки. Характеристика периодов. Митоз, его биологическое значение. Амитоз
- •22. Мейоз. Особенности первого и второго деления мейоза. Биоло-гическое значение. Отличие мейоза от митоза.
- •23. Размножение, как основное свойство живого. Бесполое и половое размножение. Формы бесполого и полового размножения. Определение, сущность, биологическое значение.
- •24. Онтогенез и его периодизация. Прямое и непрямое развитие.
- •25. Сперматогенез, фазы и превращение клеток. Биологическое значение полового размножения.
- •26. Овогенез. Особенности формирования женских гамет.
- •28. Понятие об основных этапах эмбрионального развития (дробление, гаструляция, образование тканей и органов). Механизмы цитоорганогенеза у человека.
- •29. Постэмбриональное развитие. Виды действия алкоголя и никотина на организм человека.
- •30. Старость и старение.Смерть как биологическое явление.
- •31. Общее понятие о гомеостазе.
- •32.Регенерация как проявление структурного гомеостаза.
- •34. Формы взаимосвязей между организмами в природе. Симбиоз, деление на группы. Паразитизм, как биологический феномен. Примеры.
- •35. Основные понятия паразитологии. Система паразит – хозяин. Учения о трансмиссивных заболеваниях. Примеры.
- •36. Простейшие. Латинские названия. Классификация, дать русские и латинские названия. Характерные черты организации. Значение для медицины.
- •37 Размножение у простейших. Конъюгация и копуляция.
- •38. Класс Споровики. Малярийный плазмодий. Систематика, морфология, цикл развития, видовые различия. Борьба с малярией. Задачи противомалярийной службы на современном этапе.
- •39. Саркодовые. Основные представители. Назвать по русски и по латыни. Дизентерийная амеба. Морфология, цикл развития, лабораторная диагностика, профилактика.
- •43. Кошачий сосальщик. Патогенез. Систематика, морфология, цикл развития, пути заражения. Лабораторная диагностика и профилактика. Очаги описторхоза в снг.
- •44. Плоские черви. Морфология, систематика, основные представители, значение. Латинские и русские названия их и заболевания, вызываемые ими.
- •46. Бычий цепень. Патогенез. Систематическое положение, морфология, цикл развития. Пути заражения, лабораторная диагностика болезни, профилактика.
- •47. Эхинококк. Патогенез. Систематическое положение, морфология, цикл развития. Лабораторная диагностика, пути заражения, профилактика.
- •48. Альвеококк. Патогенез. Систематическое положение, морфология, цикл развития. Лабораторная диагностика, пути заражения, профилактика.
- •72. Общие закономерности филогенеза головного мозга позвоночных животных.
10. Химический состав клетки (белки, их структура и функции).
Белки, или протеины, составляюи ри 50 до 85% органических соединений, входящих в состав живых организмов. Во всех тканях любых существ важнейшей частью являются белки. Они входят в состав всех клеток, клеточных органоидов и межклеточных жидкостей. Основными элементами белка являются: кислород, водород, азот и сера. Кроме того, в их состав могут входить фосфор, железо, магний и другие. Молекула белка - типичный полимер, она состоит из аминокислот. При соединении аминокислот в молекуле белка образуется химическая связь между карбоксильной группой аминокислоты и аминной группой другой. Связь которая образуется между молекулами аминокислота, называется пептидной. Белки имеют 4 структуры белка: Первичной структурой белковой молекулы является полипептидная цепь. Внутримолекулярные силы заставляют цепь изгибаться – возникает вторичная структура. Молекула белка бывает складчатой и спиральной. Складчатая структура при этом характерна для белков с низким метаболизмом. Большинству белковых молекул присуща третичная структура, получавшая название третичной. Полипептидные цепи скручиваются, образуя глобулу. Группы белковых молекул образуют устойчивые комплексы, которые называются четвертичными структурными. Функции белков. В клетке белки выполняют структурную, сократительную. Ферментативную функции. Структурная функция выражается в том, что белки – основной строительный материал цитоплазмы, наружной и внутренней мембран – входят в состав хромосом и других органоидов клетки. Сократительная функция обеспечивает одно из основных свойств жизни – явления раздражительности и движения. С ферментативной функцией белков связано то, что они катализируюи все реакции, протекающие в организме.
11. Нуклеиновые кислоты, их строение, локализация, значение
Простейшие нуклеиновые кислоты – мононуклеотиды. Более сложные нуклеиновые кислоты состоят из двух или более нуклеотидов – полинуклеотиды. В состав нуклеиновых кислот входят углерод, кислород, водород, азот и фосфор. Известны 2 типа нуклеиновых кислот: ДНК и РНК. Они отличаются и строением и биологическими свойствами. ДНК и РНК в клетке имеют различную локализацию. ДНК имеется в ядре, входит в состав хроматина, сосредоточена в хромосомах, имеется внутри митохондрий и пластид. В ядре ДНК вступает соединение с гистонами и протаминами, образуя нуклепротеиды. Основные хранители РНК – ядрышки, находящиеся в ядре, и рибосомы, расположенные в цитоплазме. Кроме того, РНК находится в гиалоплазме. В состав нуклеотида входит молекула фосфорной кислоты, моносахарида и 4 азотистых оснований: Аденин, Гуанин, Цитозин, Тимин или Урацил. РНК содержит моносахарид рибозу, в то время как в состав ДНК входит дезоксирибоза. Азотистые основания аденин, гуанин, цитозин есть в составе как ДНК, так и РНК, но тимин входит в состав ДНК, а урацил – в состав РНК. С нуклеиновыми кислотами связаны процессы синтеза белка, а этим в свою очередь определяется характер обмена веществ, закономерности роста и развития, явления наследственности и изменчивости.
12. Роль ДНК и РНК в передаче наследственной информации. Основные этапы: транскрипция, процессинг, трансляция. Главную роль в процессе передачи и реализации наследственной информации играют нуклеиновые кислоты. Основная биологическая функция ДНК заключается в хранении, постоянном самовозобновлении, самовоспроизведении и передаче генетической информации клетке. Информация хранится в последовательности нуклеотидов. Эта последовательность нуклеотидов, или генетический код, контролирует последовательность аминокислот в молекуле белка. ДНК является матрицей для построения иРНК. ДНК принимает участие только в одном этапе биосинтеза белка: транскрипции. Транскрипция – процесс переноса генетического кода, записанного на молекуле ДНК на молекулу иРНК. Транскрипция происходит при синтезе молекул иРНК, нуклеотиды которой присоединяются к нуклеотидам ДНК по принципу комплементарности. Молекула иРНК снимается с ДНК, как с матрицы, после чего она отделяется и перемещается в цитоплазму, где в специальных органоидах – рибосомах происходит процесс трансляции. Непосредственное участие в синтезе белка принимает иРНК. Биологическая роль иРНК связана преимущественно синтезом белка, т.е. реализацией наследственной информации. Именно РНК является посредником между ДНК и строящейся в клетке белковой молекулой. Выделяют иРНК, тРНК и рРНК. иРНК обеспечивает перенос информации о структуре белка от молекулы ДНК в рибосомы, где синтезируется белок. рРНК содержится в рибосомах и участвует в синтезе белка. тРНК доставляет аминокислоты к месту синтеза белка, т.е. к рибосомам. Трансляция – процесс перевода генетической информации, записанной на иРНК в структуру белковой молекулы, синтезируемой на рибосомах при участии тРНК. На иРНК генетический код записан «языком» триплетов нуклеотидов. Они передают информацию только тем тРНК, кодовый триплет которых комплементарен триплету иРНК. При образовании связи между кодовыми триплетами происходит передача информации и аминокислота присоединяется к цепочке белковой молекулы.