Фетисов сделанная
.docx
Министерство образования и науки Российской Федерации
Казанский Государственный Энергетический Университет
Расчет теплообменного аппарата Вариант 15
Выполнил ст. гр: ЭХПм-1-13 Сулейманова Л.Р. Проверил: Фетисов Л. В.
Казань 2013
Введение В ходе выполнения работы студент должен ознакомиться с методиками построения температурных графиков тепловых сетей, определения тепловых потерь заданий и выбора водо-водяного теплообменника для теплового пункта. В исходных данных задаются объем, назначение здания и город. Основная цель методических указаний: - обобщить, углубить и закрепить теоретические знания студентов; - научить студентов применять полученные ими теоретические знания к решению конкретных задач.
Исходные данные для первой группы:
№ |
Назначение здания |
Город |
Количество зданий |
Объем здания, тыс. |
Температура °С |
1 |
Цех металлических покрытий |
Оренбург |
5 |
150 |
130/65 |
1 Методические указания 1.1. Построение температурного графика
Город |
Расчетная температура наружного воздуха, °С |
Средняя температура отопительного периода °С |
||
Оренбург |
-28 |
-20 |
-6,8 |
1.2. Выбор Рабочих температур
- для производственных помещений с хорошей вентиляций ( точка Е на температурном графике) . Температура вторичного теплоносителя на выходе из отопительных устройств потребителя (на входе в подогреватель ЦТП ) соответствует точке G на рисунке 1. Приведенные значения температур вторичного теплоносителя соответствуют пиковому режиму. При потеплении наружного воздуха эти температуры падают и найти их можно по вспомогательному графику ( линии ЕС и GC ). 1.3 Определение тепловых потерь зданий. Тепловые потери через огражения (стены, потолки, полы, окна, двери) рассчитываются по уравнениям теплопередачи отдельно от всех помещений, кВт:
При определении общих тепловых потерь здания надо просуммировать потери всех его помещений. Для ориетировочных расчетов можно пользоваться приближенными формулами. Тогда теплопотери через огражения, кВт:
где - удельные тепловые потери здания по табл. 1.3, кВт(
V - объем отдельного здания по наружному контуру, ;
- расчетная внутреняя температура по табл. 1.2,
- расчетная температура наружного воздуха для систем отопления по табл. 1.1,
При наличии вентиляции следует учитывать также тепловые потери с вентиляционным воздухом, кВт:
Здесь - удельные теплопотери с вентиляционным воздухом по табл. 1.3, кВт
(
- расчетная температура наружного воздуха для вентиляции, (в табл. 1.1 они приведены для пикового режима).
Так как FБ<FП , дальнейший расчет проводится в пиковом режиме .
Любой теплообменный аппарат можно рассчитать по двум уравнениям теплового баланса и теплопередачи:
где Q - теплота, переданная от горячего теплоносителя к холодному, кВт;
- массовые расходы теплоносителей, кг/c;
- массовые теплоемкости теплоносителей, кДж/(кгК);
- температуры горячего и холодного теплоносителей,
','' - вход и выход теплоносителя;
- КПД теплообменника
Объемные расходы теплоносителей:
где плотности воды и теплоемкости находятся по таблице 1.4 при средних температурах
Находим необходимое проходное сечение теплообменника по трубам,
Здесь w - скорость горячей воды, которая задается в первом приближении в диапазоне 0,5-2,5 м/c. При меньших значениях скорости снижается коэффициент теплопередачи, а при больших - значительно возрастает гидравлическое сопротивление теплообменника, а следовательно и мощность привода насоса.
По определенному приходоному сечению из табл. П.1 выбирается секция теплообменника, уточняется для нее скорости теплоносителей в трубах и межтрубном пространстве, м/с:
Типоразмер
|
Длина труб Lтр,м
|
Кол-во труб
|
Поверхность нагрева F,м2
|
Проходное сечение,м2 |
Эквивал. диаметр межтрубного простр., dмт,м
|
||
труб, Fт |
межтрубного пространства, Fмт |
||||||
МВН-2050-33 |
2,046 |
109 |
9,93 |
0,0147 |
0,0308 |
0,0201 |
где , - реальные проходные сечения по трубам и межтрубному пространству для выбранной секции.
Определяются режимы движения теплоносителей:
Здесь w - скорости теплоносителей, м/с;
d - внутренний диаметр труб для горячей воды и эквивалентный диаметр межтрубного пространства из табл. П.1 - для холодной, м;
- коэффициенты кинематической вязкости теплоносителей из табл. 1.4 при их средних температурах,
- числа (критерии) подобия Рейнольдса для теплоносителей. Если то режимы движения теплоносителей турбулентные и для расчета коэффициентов теплоотдачи следует использовать уравнение подобия:
где Pr - число Прандтля теплоносителей из табл. 1.4 при их средних температурах;
- число Прандтля теплоносителей при температуре стенки труб, которая принимается в первом приближении, .
Находим коэффициенты конвективной теплопередачи, Вт/(
Учитывая малую толщину стальных труб и высокий коэффициент теплопроводности стали, коэффициент теплопередачи можно определить по формуле для плоских стенок, Вт/
где - коэффициенты конвективной теплоотдачи со сторон горячего и холодного теплоносителей, Вт/
- толщина труб теплообменника, м;
- коэффициент теплопроводности стенки труб, Вт/(мК);
- термическое сопротивление загрязнений с внутренней и наружной поверхностей труб, (
Затем находится в первом приближении необходимая поверхности теплообмена,
где средний температурный напор
Определяем количество секций теплообменника:
Задачей расчета является определение гидравлического сопротивления теплообменного аппарата по теплоносителям (потерь давления) и мощности привода насосов. Полное гидравлическое сопротивление складывается из потерь на трение и местных сопротивлений МПа:
Сопротивление трения определяется по формуле, МПа:
где L - полная длина канала, м;
d - внутренний диаметр труб для горячей воды и эквивалентный диаметр межтрубного пространства из табл. П.1 - для холодной, м;
- плотность теплоносителя при его средней температуре,
w - скорость воды, м/c;
- коэффициент сопротивления трения, который зависит от режима движения жидкости и шероховатости канала.
где - относительная шероховатость труб, а К - абсолютная, мм, которую можно выбрать из табл. 1.5
Местные потери обусловлены вихреобразованием в местах изменения сечения канала и других препятствий (вход, выход, поворот и др.) и могут быть определены по формуле, МПа:
Здесь - коэффициенты местных сопротивлений (табл. 1.6)
Коэффициенты местных сопротивлений
|
|
||||||||||||||||||
Полная длина канала для горячей воды и холодной воды (в межтрубном пространстве), м:
где размеры: - длина труб теплообменника из табл. П1., м; L и C смотрите обозначения на рис. 1.2, а их значения - в табл. П.2. Мощность привода насоса определяется по уравнению, кВт:
Здесь V - объемный расход теплоносителя, - КПД насоса.
|
|
||||||||||||||||||
|
|
||||||||||||||||||
|
|
||||||||||||||||||
|
|||||||||||||||||||
|
|
||||||||||||||||||
|
|
||||||||||||||||||
|
|
||||||||||||||||||
|