
- •О.И.Москвич общая физика Молекулярная физика
- •Предисловие
- •I. Основы молекулярной статистики
- •1.1. Предмет молекулярной физики
- •1.2. Масштабы физических величин в молекулярном мире
- •1.3. Теоретические и экспериментальные методы молекулярной физики
- •1.4. Эволюция молекулярных систем. Порядок и хаос
- •1.5. Принципы организации статистического и термодинамического методов изучения макросистем
- •Статистический метод
- •Термодинамический метод
- •2.1. Классификация моделей молекулярных систем
- •2.2. Идеальные статистические системы
- •Модели идеальных систем
- •2.3. Элементарные сведения из теории вероятностей
- •Случайные события
- •Определения вероятности событий
- •Статистическое или частотное определение вероятности.
- •Теоремы теории вероятностей
- •Условие нормировки вероятности
- •Случайная величина
- •Плотность вероятности
- •2.4. Основные понятия молекулярной статистики
- •Вероятность микроскопического состояния. Статистический ансамбль
- •Статистические постулаты
- •Комментарий к постулату равновероятности
- •Эргодическая гипотеза:
- •Постулат равновероятности доступных микроскопических состояний изолированной системы в состоянии термодинамического
- •Комментарий к эргодической гипотезе
- •Вероятность макроскопического состояния
- •3.1. Вывод закона распределения вероятностей Описание системы
- •Актуальные свойства модели системы
- •Постановка задачи
- •Вывод закона
- •Математические преобразования больших чисел. Введение общепринятых обозначений
- •Формула для вероятности макросостояния. Закон Бернулли, или биномиальное распределение.
- •3.2. Графическое представление биномиального распределения.
- •Основные характеристики биномиального распределении.
- •3.3. Предельные случаи биномиального распределения
- •4.1. Распределение энергии в статической системе
- •Вывод распределения Гиббса
- •4.2. Вывод распределения Максвелла
- •4.3. Плотность вероятности и характерные скорости распределения Максвелла
- •4.4. Распределение Максвелла по компонентам скорости
- •4.5. Экспериментальная проверка распределения Максвелла
- •5.1. Вывод формулы для давления идеального газа
- •5.2. Основное уравнение молекулярно-кинетической теории. Газовые законы
- •5.3. Уравнение эффузии
- •5.4. Измерение давления
- •5.5. Определение и измерение температуры
- •5.6. Построение эмпирической шкалы на основе газового термометра
- •Преимущества газовой шкалы температур
- •Построение газовой шкалы температур
- •Термодинамическая шкала температур
- •6.1. Распределение молекул по энергиям во внешнем потенциальном поле
- •6.2. Формула Больцмана для концентрации молекул в потенциальном поле
- •6.3. Зависимость концентрации молекул газа от координат в однородном гравитационном поле и поле центробежных сил
- •Графическое представление зависимости концентрации молекул от координат
- •6.4. Экспериментальное подтверждение распределения Больцмана: опыты Перрена
- •Получение макромолекул
- •Выделение частиц одинакового размера
- •Измерение диаметра макромолекулы
- •Подсчёт количества частиц на определённой высоте
- •6.5. Барометрическая формула
- •6.6. Закон распределения Максвелла – Больцмана
- •7.1. Формулировка теоремы и её доказательство Формулировка теоремы
- •Актуальные свойства модели статистической системы
- •Доказательство теоремы
- •7.2. Статистические степени свободы
- •7.3. Броуновское движение и его статистическое описание
- •Поступательное броуновское движение
- •Вращательное броуновское движение
- •7.4. Броуновский критерий точности физических измерений
- •7.5. Классическая теория теплоёмкости многоатомных газов. Область её применимости
- •7.6. Классическая теория теплоёмкости твёрдых тел.
- •7.7. Применение квантовых моделей в теории теплоёмкости твёрдых тел
- •Модель Эйнштейна
- •Модель Дебая
- •II. Основы термодинамики
- •8.1. Четыре постулата термодинамики
- •8.2. Нулевое (общее) начало термодинамики
- •Формулировка постулата
- •Свойство транзитивности термодинамического равновесия
- •Информационное содержание постулата
- •Фундаментальное и прикладное значение постулата
- •8.3. Макроскопические процессы
- •8.4. Функция состояния
- •Математические свойства функции состояния
- •8.5. Внутренняя энергия системы. Работа и теплота Внутренняя энергия
- •Макроскопическая работа и теплота
- •8.6. Калорическое и термическое уравнения состояния
- •9.1. Первое начало термодинамики
- •Формулировка постулата
- •Математическая запись постулата
- •Информационное содержание постулата
- •Фундаментальное и прикладное значение постулата
- •9.2. Теплоёмкость
- •Связь между теплоёмкостями и(общий случай)
- •Уравнение Роберта Майера
- •9.3. Политропические процессы в идеальном газе
- •Вывод уравнения политропического процесса в идеальном газе
- •9.4. Тепловые машины и их эффективность.
- •Принципиальная схема работы тепловой машины
- •Показатели эффективности тепловых машин
- •10.1. Цикл Карно
- •Расчёт кпд машины Карно
- •10.2. Теоремы Карно
- •Термодинамическая шкала температур
- •10.3. Метод циклов
- •Задача о нахождении зависимости внутренней энергии макроскопического тела от его объема
- •10.4. Неравенство Клаузиуса. Определение энтропии
- •10.5. Оценка эффективности тепловых машин сверху
- •Примеры оценок эффективности тепловых машин сверху кпд бензинового двигателя внутреннего сгорания
- •Кпд паровой турбины
- •Киэ бытового холодильника
- •Киэ кондиционера воздуха
- •Киэ теплового насоса
- •Тепловое загрязнение окружающей среды
- •11.1. Формулировки второго начала термодинамики
- •Энтропийная формулировка второго начала термодинамики Часть первая
- •Часть вторая
- •Информационное содержание постулата
- •11.2. Закон возрастания энтропии в изолированных системах
- •Демон Максвелла
- •Формулировка парадокса
- •Разрешение парадокса
- •11.3. Область применимости второго начала термодинамики
- •Статистический характер второго начала
- •11.4. Концепция тепловой смерти Вселенной
- •Концепция Клаузиуса
- •Флуктуационная гипотеза Больцмана
- •Несостоятельность концепции тепловой смерти Вселенной
- •11.5. Энтропия и её изменение в различных процессах
- •Постановка задачи
- •Описание системы
- •Актуальные свойства системы и процесса
- •Решение
- •Парадокс Гиббса Описание
- •По разные стороны перегородки находятся различные газы. После устранения перегородки начнется диффузия.
- •По разные стороны перегородки находится один и тот же газ.
- •12.1. Термодинамические функции
- •Свободная энергия
- •Термодинамический потенциал Гиббса
- •12.3. Условия термодинамической устойчивости макроскопических систем. Принцип Ле Шателье-Брауна
- •Принцип Ле Шателье-Брауна
- •Проведение полного термодинамического анализа вещества на полуэмпирической основе
- •12.4. Третье начало термодинамики
- •Формулировка постулата
- •Математическая запись постулата (варианты)
- •Информационное содержание постулата
- •Статус постулата
- •Следствия третьего начала
- •III. Физика реальных макросистем
- •13.1. Твердые тела
- •13.2. Реальные газы и жидкости
- •Потенциал межмолекулярного взаимодействия
- •Природа межмолекулярного взаимодействия
- •Структура жидкостей
- •13.3. Переход из газообразного состояния в жидкое.
- •13.4. Уравнения состояния реального газа
- •13.5. Модель газа Ван-дер-Ваальса. Уравнение Ван-дер-Ваальса
- •14.1. Изотермы газа Ван-дер-Ваальса
- •14.2. Критическое состояние вещества
- •Закон соответственных состояний
- •Свойства вещества в критическом состоянии
- •Анализ применения уравнения Ван-дер-Ваальса для описания свойств реальных газов
- •14.3. Внутренняя энергия газа Ван-дер-Ваальса
- •14.4. Эффект Джоуля-Томсона Основные определения
- •Описание процесса Джоуля-Томсона
- •Сущность эффекта Джоуля-Томсона
- •Расчет дифференциального эффекта Джоуля-Томсона
- •Расчет интегрального эффекта Джоуля-Томсона
- •14.5. Методы получения низких температур
- •Метод противоточного обмена теплотой
- •Метод адиабатического размагничивания
- •15.1. Условие равновесия фаз химически однородного вещества
- •15.2. Классификация фазовых переходов по Эренфесту
- •Фазовые переходы первого рода
- •Фазовые переходы второго рода
- •15.3. Фазовые переходы первого рода. Диаграмма состояний
- •15.4. Уравнение Клапейрона-Клаузиуса
- •Вывод уравнения Клапейрона-Клаузиуса
- •Вывод уравнения Клапейрона-Клаузиуса методом циклов
- •Актуальные свойства процесса
- •Постановка задачи
- •Вывод уравнения
- •15.5. Диаграмма состояний гелия. Сверхтекучесть жидкого гелия.
- •16.1. Релаксационные процессы в молекулярных системах
- •16.2. Стационарные уравнения переноса в газах, жидкостях и твердых телах
- •Уравнение теплопроводности
- •Уравнение самодиффузии
- •Уравнение внутреннего трения
- •16.3. Внутренняя теплопроводность и внешняя теплопередача
- •Стационарное распределение температуры в бесконечной плоско-параллельной пластинке
- •Стационарное распределение температуры между двумя концентрическими бесконечно длинными цилиндрами
- •Стационарное распределение температуры между двумя концентрическими сферами
- •Внешняя теплопередача
- •17.1. Столкновения молекул и их количественные характеристики
- •Эффективное сечение молекул
- •Средняя длина свободного пробега молекулы
- •Кинематические параметры и
- •17.2. Обобщенное уравнение переноса
- •Вывод обобщенного уравнения процесса Описание системы
- •Актуальные свойства модели процесса
- •Постановка задачи
- •Вывод уравнения
- •17.3. Элементарная кинетическая теория теплопроводности,
- •17.4. Явления переноса в ультраразреженных газах
- •Трение и теплопроводность ультраразреженных газов
- •Тепловая и изотермическая эффузия
- •18.1. Атмосфера как открытая система и как открытая книга
- •18.2. Состав и структура атмосферы Земли.
- •18.3. Термофизическая модель атмосферы
- •18.4. Парниковый эффект
- •Сущность парникового эффекта
- •Парниковые газы
- •Проблема глобального потепления
- •Киотский протокол
- •18.5. Инверсия температуры в стратосфере. Озоносфера Земли
- •Мониторинг озонового слоя
- •Монреальский Протокол
- •18.6. Концепция «ядерной зимы»
- •«Ядерная зима» Сценарии ядерной войны
- •Огненные смерчи – суперподъемники
- •Антипарниковый эффект
- •Глобальный характер климатических последствий
- •Список литературы
- •Общая физика. Молекулярная физика
- •660041, Г. Красноярск, пр. Свободный, 79
4.4. Распределение Максвелла по компонентам скорости
Формальный переход от сферической системы координат в пространстве скоростей (рис. 4.2) к декартовой (рис. 4.4) приводит закон Максвелла к следующему виду:
Это распределение отвечает на вопрос:
какова вероятность того, что молекула
обладает скоростью с компонентами
в интервалах
,
,
?
Как видно из (4.25), вероятность выражается произведением одномерных вероятностей, поскольку по своей сути является вероятностью произведения трех независимых событий:
где
Рис. 4.4.
Аналогичный
вид имеют вероятности
и
.
Одномерная плотность вероятности типа
совпадает с гауссовской функцией
распределения и на графике (рис.4.5)
изображается симметричным колокольчиком.
Площадь заштрихованной полоски на рис.
4.5 равна вероятности того, что проекция
скорости молекулы лежит в интервале
.
Рис. 4.5.
Приведённые выше формулы распределения Максвелла для сферической и декартовой систем координат позволяют находить средние значения различных микроскопических и макроскопических параметров, зависящих от абсолютной скорости или отдельных компонент скорости в соответствии с общей процедурой усреднения.
Для применения этих формул к системе
частиц необходимо использовать теорему
о сложении вероятностей. Число частиц,
скорости которых заключены между
,
Относительное число частиц со скоростями в том же интервале
Применение одномерного распределения
к системе частиц даёт соответствующие
формулы, определяющие абсолютное и
относительное количество частиц с
компонентами скорости
,
заключёнными в интервале
.
Таким образом, абстрактная величина вероятности проявляется в конкретной и ясной форме: это не что иное, как доля частиц, обладающих той или иной скоростью.
4.5. Экспериментальная проверка распределения Максвелла
Закон Максвелла неоднократно подвергался экспериментальной проверке, начиная с опыта Штерна, осуществлённого в 1920 году. В большинстве опытов используется такое явление как эффузия. С помощью нескольких щелей получают узкий молекулярный пучок, который направляется на устройство, сортирующее молекулы по скоростям, после чего частицы регистрируют тем или иным способом. Для сортировки молекул наиболее часто используют метод вращающихся дисков (опыт Ламмерта) и метод вращающегося цилиндра (опыт Цартмана).
На схеме 4.5.1 дано краткое описание этих методов. Более подробное их описание можно найти в [14].
Существуют и принципиально иные способы проверки данного закона. Например, наблюдается экспериментально уширение линии спектра излучения, движущихся возбуждённых молекул газа за счёт эффекта Допплера. Ширина спектральных линий определяется распределением молекул по скоростям.
Схема 4.5.1.
Опытные проверки блистательно подтвердили справедливость распределения Максвелла.
Контрольные вопросы
1. На какой вопрос отвечает распределение Гиббса? Какова область его применимости?
2. Как
используется условие
при выводе закона Гиббса?
3. Как
определяется параметр
в распределении Гиббса?
Какие
существуют основания считать, что
?
4. Запишите распределение Гиббса в обобщенной форме, если энергия системы является
а) непрерывной случайной величиной;
б) дискретной случайной величиной. Поясните смысл всех сомножителей в формуле.
5. На какой вопрос отвечает распределение Максвелла?
6. Что называется пространством скоростей? С какой целью эта модель используется при выводе распределения Максвелла?
7. Как вычислить
нормировочную постоянную
в формуле Максвелла?
8. Как определяется температура в статистике?
9. График
плотности вероятности
выглядит как асимметричный колокольчик,
а график
– как симметричный колокольчик. С чем
это связано?
10. Какие скорости молекул называются характерными? Чему они равны?
11. Как
определить долю частиц в системе,
обладающих абсолютной скоростью в
интервале
?
12. Как осуществлялась проверка распределения Максвелла в опыте Цартмана и в опыте Ламмерта?
ЛЕКЦИЯ 5
МИКРОСКОПИЧЕСКАЯ ТЕОРИЯ И МАКРОСКОПИЧЕСКИЕ ИЗМЕРЕНИЯ
Критерием справедливости или истинности любой физической теории является эксперимент. Напомним, что одной из основных задач молекулярной статистики является установление связи между средними микроскопическими параметрами молекулярной системы и её макроскопическими характеристиками. Все макроскопические параметры системы могут быть получены из микроскопических представлений, но их экспериментальное определение требуетмакроскопических измерений.
Начнём с рассмотрения такого макроскопического параметра как давление. По определению, давление – это отношение силы, действующей нормально к поверхности, к величине этой поверхности. Силу можно выразить через изменение импульса:
В газе импульс
передаётся стенке молекулами,
сталкивающимися с ней. Таким образом,
из (5.1) следует, что давление газа – это
величина, численно равная нормальной
составляющей импульса, передаваемого
молекулами газа за 1 секунду стенке
сосуда площадью 1 квадратный метр. Исходя
из этого заключения, проведём расчёт
давления газа.