
- •Введение
- •1. Предмет гидравлики
- •2. Жидкость
- •3. Важнейшие физические свойства жидкостей
- •4. Понятия реальной и идеальной жидкости.
- •Глава 1 давление в точке жидкости
- •1. Силы, действующие на жидкость
- •2. Понятие о давлении
- •3. Основное уравнение гидростатики
- •4. Закон Паскаля
- •5. Дифференциальные уравнения равновесия жидкости
- •6. Виды давления
- •7. Приборы для измерения давления
- •Сила давления жидкости на поверхности
- •1. Сила давления жидкости на плоскую фигуру
- •2. Центр давления
- •Сила давления на дно сосуда
- •Равновесие и остойчивость тел, погруженных в жидкость
- •1. Закон Архимеда
- •2. Равновесие и остойчивость тел, полностью погруженных в жидкость. Условия равновесия
- •Условия остойчивости
- •Основные понятия гидродинамики
- •1. Движение установившееся и неустановившееся
- •2. Элементы потока
- •3.Расход и средняя скорость потока
- •4.Движение безнапорное и напорное
- •5. Движение равномерное и неравномерное
- •Понятие об удельной энергии
- •Плавноизменяющееся движение
- •Основные законы гидродинамики
- •1. Уравнение неразрывности
- •2. Уравнение Даниила Бернулли для частицы жидкости
- •Уравнение Даниила Бернулли для потока
- •4. Уклоны гидравлический и пьезометрический
- •5. Принцип Вентури
- •6. Классификация потерь напора
- •Потери напора по длине
- •1. Основное уравнение равномерного движения
- •2. Два режима течения жидкости
- •3. Критерий режима течения жидкости
- •4. Законы ламинарного течения жидкости в круглой трубе
- •Распределение скоростей по живому сечению
- •Определение расхода
- •Определение средней скорости
- •5. Понятие о местной скорости
- •6. Распределение скоростей по сечению турбулентного потока
- •7. Основные зависимости для турбулентного течения
- •Два вида основной формулы для определения потерь напора по длине при турбулентном режиме
- •9. Формулы для определения скоростной характеристики
- •Местные потери напора
- •1. Потери напора при внезапном расширении трубы
- •2. Местные потери напора в различных случаях практики
- •Напорное движение жидкости в трубах
- •1. Основные положения
- •2. Понятие о свободном напоре
- •3. Расчет трубопровода
- •4. Гидравлический удар в трубах
- •Вытекание жидкости через отверстия и насадки
- •2. Вытекание жидкости через затопленное отверстие
- •3. Классификация отверстий и насадок
- •4. Вытекание жидкости через насадки
- •5. Вытекание жидкости при переменном уровне
- •6. Практическое применение отверстий и насадок
- •Глава 10 особые состояния жидкости
Вытекание жидкости через отверстия и насадки
1. Вытекание жидкости через отверстие в тонкой стенке
Рассмотрим случай вытекания жидкости в атмосферу через отверстие площадью ω (рис.45).
Рис.45.
Струя при вытекании через отверстие постепенно сжимается. Ближайшее к отверстию наименьшее живое сечение С-С, в котором движение можно рассматривать плавноизменяющимся, называется сжатым сечением. Обозначим площадь сжатого сечения С-С буквой ωсж. Отношение
(91)
называется коэффициентом сжатия.
Так как отдельные струйки в сжатом сечении почти параллельны, то можно считать, что давление в нем равно давлению окружающей среды, т. е. в данном случае барометрическому давлению рб.
Обозначим Н высоту уровня жидкости над центром тяжести отверстия, v -скорость в сжатом сечении. Выберем за ось координат горизонтальную ось X-X, проходящую через центр тяжести отверстия, и напишем уравнение Бернулли для сечения О-О и сжатого сечения С-С:
,
где v0 – скорость воды в сосуде.
Пренебрегая величиной (v02/2g) (ввиду ее малости по сравнению с Н), получим
,
откуда скорость вытекания
(92)
где
называют коэффициентом скорости.
Коэффициент скорости является отношением
скоростей реальной и идеальной жидкости
при вытекании через отверстия и насадки.
Для вычисления расхода жидкости через отверстие надо скорость умножить на площадь сжатого сечения:
Учитывая, что
(93)
Обозначим
(94)
Величина μ называется коэффициентом расхода (отношение расхода реальной жидкости через отверстие к расходу идеальной жидкости при вытекании через отверстия и насадки). Выражение (94) является безразмерной формой для уравнения неразрывности потока, а (93) принимает вид
(95)
2. Вытекание жидкости через затопленное отверстие
Рассмотрим вытекание жидкости через затопленное отверстие (рис.46). Обозначим v скорость в сжатом сечении С-С, а Н- разность уровней в баках I и II.
Приняв за плоскость сравнения плоскость X-X, запишем уравнение Бернулли для сечений О-О и С-С
Рис.46.
В этом уравнении
можно принять равным нулю, а
Поэтому
или
(96)
где
Соответственно
(97)
или
(98)
Исследованиями установлено, что коэффициент расхода μ для затопленного отверстия можно принимать равным коэффициенту μ при вытекании в атмосферу.
3. Классификация отверстий и насадок
На рис.47,а изображен сосуд, имеющий в одной из своих стенок отверстие. Обозначим толщину стенки сосуда L , а диаметр отверстия D. Если L< 3D, то стенку рассматривают как тонкую и отверстие называют отверстием в тонкой стенке. При вытекании жидкости через такое отверстие все потери напора сведутся к местным потерям. При L=3÷5D отверстие рассматривается, как короткая трубка, вставленная в отверстие или насадок (рис.47,б).
а) б)
Рис.47.
а) б)
Рис.48.
Насадки разделяются на цилиндрические и конические. Цилиндрические насадки могут быть внешние (рис.47,б) и внутренние (рис48,а). Конические насадки бывают конически сходящиеся (рис.48,б) и конически расходящиеся (рис.49 и 50), причем угол β между образующими конуса называется углом конусности. Если в конически расходящейся насадке (β>0,04π) то, как показывают опыты, струя вытекает из отверстия, не касаясь стенок насадки (рис.50).
Рис.49.
Рис.50.