Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЗАЧЕТ Философия.doc
Скачиваний:
203
Добавлен:
28.03.2016
Размер:
254.98 Кб
Скачать

2 Этап зарождения и формирования эволюционных идей

Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпиричес­кий материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел глав­ным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с активизацией иссле­дований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879) было открыто электромагнитное поле, которое не подчинялось законам механики.

Успехи электродинамики привели к созданию электромагнит­ной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электриче­ство и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.).

Итак, уже в первые десятилетия XIX в. было фактически под­готовлено «свержение» метафизического в целом способа мышления, господствовавшего в естествознании. Особенно этому способствовали следующие открытия: создание клеточной теории (Шлейден и Шванн, доказала единство всего живого), открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.

8. Неклассическая наука и квантово-релятивисткая картина мира

Неклассическая наука (первая половина XX в.) связана с разработкой релятивистской и кванто­вой теории, отвергает объективизм классической науки. Особенности: изучение микромира, человек входит в картину мира, пространство и время относительно, модельный характер, мир – динамичен, вероятностный характер законов.

Как было выше сказано, классическое естествознание XVII— XVIII вв. стремилось объяснить причины всех явлений (включая социальные) на основе законов механики Ньютона. В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль пре­тендовали законы электромагнитных явлений. Была создана (Фа-радей, Максвелл и др.) электромагнитная картина мира. Однако в результате новых экспериментальных открытий в области строе­ния вещества в конце ХIХ — начале XX в. обнаруживалось мно­жество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил «каскад» научных открытий.

В 1895—1896 гг. были открыты лучи Рентгена, радиоактив­ность (Беккерель), радий (М. и П. Кюри) и др. В 1897 г. англий­ский физик Дж. Томсон открыл первую элементарную частицу — электрон и понял, что электроны являются составными частями атомов всех веществ. В 1911 г. английский физик Э. Резерфорд в экспериментах обнаружил, что в атомах существуют ядра, положительно заря­женные частицы, размер которых очень мал по сравнению с раз­мерами атомов, но в которых сосредоточена почти вся масса ато­ма. Он предложил планетарную модель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны.

Немецкий физик М. Планк в 1900 г. ввел квант действия (по­стоянная Планка) и, исходя из идеи квантов, вывел закон излучения. Было установлено, что испускание и поглощение электромагнитного излучения происходит дискрет­но, определенными конечными порциями (квантами).

Весьма ощутимый «подрыв» классического естествознания был осуществлен А. Эйнштейном, создавшим теорию относительности. В целом его теория основывалась на том, что в отличие от механики Нью­тона, пространство и время не абсолютны. Они органически свя­заны с материей, движением и между собой.

Таким образом, теория относительности показала неразрыв­ную связь между пространством и временем (она выражена в еди­ном понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его про­странственно-временными формами существования — с другой.

Все вышеназванные научные открытия кардинально измени­ли представление о мире и его законах, показали ограниченность классической механики. Последняя, разумеется, не исчезла, но обрела четкую сферу применения своих принципов — для харак­теристики медленных движений и больших масс объектов мира.