
- •Лекция №4. Теоретические основы вентиляции
- •1. Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции
- •Исходные данные для расчета
- •2 Аэродинамический расчет систем вентиляции с механическим побуждением движения воздуха
- •3 Аэродинамический расчет систем вентиляции с естественным побуждением движения воздуха
- •Пример расчета воздуховодов естественной вентиляции Исходные данные
- •Решение
- •Пример расчета воздуховодов приточной механической вентиляции Исходные данные
- •Решение
- •8.4 Программное обеспечение компьютерного расчета систем вентиляции
- •Глава 9. Воздухораспределение в помещениях
- •Воздухораспределение струями
Лекция №4. Теоретические основы вентиляции
1. Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции
Аэродинамический расчет воздуховодов обычно сводится к определению размеров их поперечного сечения, а также потерь давления на отдельных участках и в системе в целом. Можно определять расходы воздуха при заданных размерах воздуховодов и известном перепаде давления в системе.
При аэродинамическом расчете воздуховодов систем вентиляции обычно пренебрегают сжимаемостью перемещающегося воздуха и пользуются значениями избыточных давлений, принимая за условный нуль атмосферное давление.
При движении воздуха по воздуховоду в любом поперечном сечении потока различают три вида давления: статическое, динамическое и полное.
Статическое давление определяет потенциальную энергию 1 м3 воздуха в рассматриваемом сечении (рст равно давлению на стенки воздуховода).
Динамическое давление – это кинетическая энергия потока, отнесенная к 1 м3 воздуха, определяется по формуле:
(1)
где
– плотность
воздуха, кг/м3;
– скорость
движения воздуха в сечении, м/с.
Полное давление равно сумме статического и динамического давлений.
(2)
Традиционно при расчете сети воздуховодов применяется термин “потери давления” (“потери энергии потока”).
Потери давления (полные) в системе вентиляции складываются из потерь на трение и потерь в местных сопротивлениях (см.: Отопление и вентиляция, ч. 2.1 “Вентиляция” под ред. В.Н. Богословского, М., 1976).
Потери давления на трение определяются по формуле Дарси:
(3)
где
– коэффициент
сопротивления трению, который
рассчитывается по универсальной формуле
А.Д. Альтшуля:
(4)
где
– критерий Рейнольдса; К – высота
выступов шероховатости (абсолютная
шероховатость).При
инженерных расчетах потери давления
на трение
,
Па (кг/м2),
в воздуховоде длиной /, м, определяются
по выражению
(5)
где
– потери
давления на 1 мм длины воздуховода,
Па/м [кг/(м2
* м)].
Для
определения R
составлены
таблицы и номограммы. Номограммы (рис.
1 и 2) построены для условий: форма сечения
воздуховода круг диаметром,
давление воздуха 98 кПа (1 ат), температура
20°С, шероховатость
= 0,1 мм.
Для
расчета воздуховодов и каналов
прямоугольного сечения пользуются
таблицами и номограммами
для круглых воздуховодов, вводя при
этом
эквивалентный диаметр прямоугольного
воздуховода, при котором потери давления
на трение в
круглом
и прямоугольном
~
воздуховодахравны.
В практике проектирования получили распространение три вида эквивалентных диаметров:
■ по скорости
при
равенстве скоростей
■ по расходу
при
равенстве расходов
■ по площади поперечного сечения
при равенстве площадей сечения
При расчете воздуховодов с шероховатостью стенок, отличающейся от предусмотренной в таблицах или в номограммах (К = ОД мм), дают поправку к табличному значению удельных потерь давления на трение:
(6)
где
– табличное
значение удельных потерь давления
на трение;
– коэффициент
учета шероховатости стенок (табл. 8.6).
Потери давления в местных сопротивлениях. В местах поворота воздуховода, при делении и слиянии потоков в тройниках, при изменении размеров воздуховода (расширение – в диффузоре, сужение – в конфузоре), при входе в воздуховод или в канал и выходе из него, а также в местах установки регулирующих устройств (дросселей, шиберов, диафрагм) наблюдается падение давления в потоке перемещающегося воздуха. В указанных местах происходит перестройка полей скоростей воздуха в воздуховоде и образование вихревых зон у стенок, что сопровождается потерей энергии потока. Выравнивание потока происходит на некотором расстоянии после прохождения этих мест. Условно, для удобства проведения аэродинамического расчета, потери давления в местных сопротивлениях считают сосредоточенными.
Потери давления в местном сопротивлении определяются по формуле
(7)
где
–
коэффициент местного сопротивления
(обычно
,
в отдельных случаях имеет место
отрицательное значение, при расчетах
следует
учитывать знак
).
Коэффициентотносится
к наибольшей скорости
в суженном сечении участка или скорости
в сечении
участка с меньшим расходом (в тройнике).
В таблицах
коэффициентов местных сопротивлений
указано, к какой скорости относится
.
Потери давления в местных сопротивлениях участка, z, рассчитываются по формуле
(8)
где
– сумма
коэффициентов местных сопротивлений
на участке.
Общие
потери давления на участке воздуховода
длиной,
м, при наличии местных сопротивлений:
(9)
где
– потери
давления на 1 м длины воздуховода;
– потери
давления в местных сопротивлениях
участка.