
- •Раздел 4. Математическая логика и формальные системы.
- •4.1. Введение в формальные системы
- •4.2. Принципы построения формальных теорий.
- •4.3. Исчисление высказываний. Аксиомы и правила вывода.
- •2) Правило заключения (Modus Ponens). Если u и u β – выводимые формулы, то β выводима:
- •4.4. Исчисления предикатов и теории первого порядка.
- •3. Аксиомы исчисления предикатов делятся на две группы:
- •1) Аксиомы исчисления высказываний ( можно взять любую из систем или );
- •2) Две следующие предикатные аксиомы:
- •4.Правила вывода:
- •3) Правило - введения:
- •4.5.Предмет математической логики
- •4.6. Аксиоматический метод
- •1.4 Такое число m единственно.
- •1.20 Если k ј m и m ј n, то k ј n.
- •4.7. Логика высказываний
- •2.1 Укажите два примера множества строк: одно замкнутое, другое не замкнутое относительно правил построения.
- •2.2 Множество формул замкнуто относительно правил построения.
- •2.3 Является ли формулой ¬(p & q)?
- •2.4 Является ли формулой (p)?
- •2.10 Найдите формулу f такую, что (3) – единственная интерпретация, при которой f истинна.
- •2.11 Для любых формул f1,...,Fn (n і 1) и любой интерпретации I
- •2.12 Сформулируйте и докажите подобный факт для дизъюнкции f1 ъ ··· ъ Fn.
- •2.13 Для любой интерпретации I существует формула f такая, что I – единственная интерпретация, при которой f истинна.
- •2.15 Покажите, что для атомов p и q
- •2.22 Предполагая, что p и q – атомы, определите
- •2.23 G влечёт f тогда и только тогда, когда g и { ¬f } не выполнимо.
- •2.24 Определить, какие из следующих формул являются тавтологиями: (p й q) ъ (q й p), ((p й q) й p) й p, ((p є q) є r) є (p є (q є r)).
- •2.25 Для любых формул f, g1,...,Gn (n і 1) : f следует из { g1,..., Gn } тогда и только тогда, когда (g1 & ··· & Gn) й f – тавтология.
- •2.26 Найдите вывод q & p из p & q.
- •2.29 Найдите вывод p й r из p й q и q й r.
- •2.43 Правило удаления отрицания корректно.
- •2.44 Правило введения отрицания корректно.
- •2.45 Правило противоречия корректно.
- •2.52 Оба правила введения дизъюнкции корректны.
- •2.53 Правило удаления дизъюнкции корректно.
- •3.1 Является ли " X формулой?
- •3.2 Если формула содержит квантор, тогда она содержит переменную. Верно или нет ?
- •3.3 Если формула содержит квантор, тогда она содержит скобки. Верно или нет ?
- •3.4 Найдите свободные переменные и связанные переменные формулы
- •3.5 Все простые числа больше чем X.
- •3.10 Найдите результат подстановки константы a вместо X в формулу из задачи 3.4.
- •3.11 Если V не является свободной переменной f(V), тогда f(t) равно f(V).
- •V не является свободной переменной формулы Kw f.
- •3.12 Терм, не содержащий ни одной связанной переменной формулы f, является подстановочным в f для любой переменной.
- •3.23 Каждый терм содержит объектную константу или объектную переменную. Верно или нет ?
- •3.38 Модель арифметики первого порядка (7) стандартна.
- •3.39 G непротиворечива.
- •3.40 Арифметика первого порядка имеет нестандартную модель.
2.1 Укажите два примера множества строк: одно замкнутое, другое не замкнутое относительно правил построения.
Определение 8 (Формула). Строка F называется пропозициональной формулой, если F принадлежит всем множествам, которые замкнуты относительно правил построения.
2.2 Множество формул замкнуто относительно правил построения.
Определение формулы показывает, что множество формул является наименьшим множеством строк, замкнутых относительно правил построения; то есть, любое другое такое множество включает в себя множество формул.
В двух следующих задачах мы предполагаем, что рассматриваемая сигнатура – это {p, q}.
2.3 Является ли формулой ¬(p & q)?
2.4 Является ли формулой (p)?
Семантика
В этом и следующем разделах мы работаем с булевыми функциями, которые используются в интерпретациях формул логики высказываний.
Определение 10 (Интерпретация). Символы л,и (``ложь'', ``истина'') называются истиностными значениями. Интерпретация пропозициональной сигнатуры s есть функция из s в {л,и}.
Если s конечна, тогда интерпретация может быть определена таблицей её значений, например:
-
p
q
(3)
л
и
Семантика логики высказываний, которую мы собираемся ввести, определяет какие истиностные значения назначены формуле F интерпретацией I.
Прежде всего нам надо связать функцию с каждой пропозициональной связкой – функцию из {л,и} в {л,и} с унарной связкой ¬ и функцию из {л,и}ґ {л,и} в {л,и} с каждой бинарной связкой. Функции определяются следующими таблицами:
x |
¬(x) |
x |
y |
&(x, y) |
Ъ(x, y) |
Й(x, y) |
л |
л |
л |
л |
и | ||
л |
и |
л |
и |
л |
и |
и |
и |
л |
и |
л |
л |
и |
л |
|
и |
и |
и |
и |
и |
Для любой формулы F и любой интерпретации I истиностное значение FI , назначенное формуле F интерпретацией I, определяется как значение соответствующих булевых функций, а именно, следующим образом:
FI = I(F) если F – атом,
(¬F )I = ¬(FI),
(F Д G)I = Д(FI,GI) для каждой бинарной связки Д.
Заметим, что это определение рекурсивно: (¬F)I определяется через FI и (F Д G)I – через FI и GI.
Если FI = и, мы говорим, что формула F истинна при интерпретации I (символически I |= F ).
2.10 Найдите формулу f такую, что (3) – единственная интерпретация, при которой f истинна.
Если рассматриваемая сигнатура конечна, тогда множество интерпретаций тоже конечно, и значения FI для всех интерпретаций можно представить в виде конечной таблицы. Эта таблица называется таблицей истинности формулы F. Например, предыдущая задача может быть сформулирована следующим образом: найти формулу, таблицей истинности которой является
-
p
q
л
л
л
л
и
и
и
л
л
и
и
л