Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
л_одм_5.doc
Скачиваний:
39
Добавлен:
28.03.2016
Размер:
279.55 Кб
Скачать

4.6. Аксиоматический метод

В теории, построенной в согласии с аксиоматическим методом, начинают с небольшого количества неопределяемых (первичных) понятий, которые по предположению удовлетворяют определенным аксиомам. Прочие понятия, изучаемые в теории, определяются через первичные, и из аксиом и определений выводятся теоремы. Развитие математической теории в таком стиле – это первый шаг по направлению к её формализации.

В этой части мы исследуем применение аксиоматического метода в арифметике. Мы используем термин ``натуральные числа'' в смысле, отличающемся от обычного – ноль мы тоже включаем в натуральные числа. Такое использование этого термина обычно для зарубежных математиков. Мы пишем ``натуральные числа'' только чтобы не писать каждый раз ``целые неотрицательные числа''.

Аксиомы натуральных чисел

Мы рассматриваем множество w объектов называемых натуральными числами. Одно из натуральных чисел называется нулём и обозначается 0 . Для любого натурального числа n одно из натуральных чисел называется следующим за числом n и обозначается n' .

Множество натуральных чисел таково, что удовлетворяет следующим аксиомам:

Аксиома 1. Для любого натурального числа n: n'№ 0.

Аксиома 2. Для любых натуральных чисел m и n: если m'=n', то m = n.

Аксиома 3. Пусть A является подмножеством множества w со следующими свойствами:

  1. 0 О A;

  2. для любого натурального числа n: если n О A, то n' О A.

Тогда A = w.

Эти аксиомы были введены Джузеппе Пеано в 1889 году.

Начальные задачи

Определения. 1 = 0', 2 = 1', 3 = 2', 4 = 3' .

В каждой из следующих задач получите данное утверждение из аксиом.

1.1 2 № 4.

1.2 n' n.

Решение. Рассмотрим множество A натуральных чисел n таких, что n' n. Наша цель – показать, что A = w, и мы сделаем это, используя аксиому 3. Сначала нам надо проверить, что 0 О A, то есть 0' № 0. Это следует из аксиомы 1. Теперь возьмём любое натуральное число n и предположим, что n О A, то есть n' n. Нам надо вывести из этого предположения, что n'О A – это значит, что n'' n'. Предположим, что n''= n'. Тогда, по аксиоме 2, n'= n, а это противоречит тому, что n' n.

Это доказательство, разумеется, ``доказательство по индукции''. Условия 1 и 2 аксиомы 3 являются ``базисом'' и ``индуктивным шагом''. Аксиома 3, которая служит для построения доказательств подобных этому, называется аксиомой индукции.

1.3 Если n № 0, то существует натуральное число m такое, что n = m'.

1.4 Такое число m единственно.

Сложение

Чтобы определить сумму двух натуральных чисел, нам надо доказать корректность хорошо известного рекурсивного определения сложения (уравнения (1) ниже), то есть существование и единственность функции, удовлетворяющей этим уравнениям. Эти факты сформулированы здесь как задачи 1.7 и 1.8.

1.5 Существует функция f из натуральных чисел в натуральные числа такая, что

f(0) = 3,

f(n') = f (n)'.

1.6 Для любого m существует функция f из натуральных чисел в натуральные числа такая, что

f(0) = m,

f(n') = f(n)'.

1.7 Существует функция g из w ґ w в w такая, что

g(m, 0) = m,

g(m, n') = g(m, n).

1.8 Такая функция g единственна.

Определение 1 (Сумма). Для этой функции g число g(m, n) называется суммой m и n и обозначается m + n .

Так, для любых натуральных чисел m и n:

m + 0 = m,

(1)

m + n'= (m + n)'.

Корректность определения сложения была выведена из аксиом Пеано Лазло Кальмаром в 1929 году.

1.9 2 + 2 = 4.

1.10 n'= n + 1.

1.11 (k + m) + n = k + (m + n).

1.12 0 + n = n.

1.13 m'+ n = m + n'.

1.14 m + n = n + m

1.15 Если k + m = k + n, то m = n.

Порядок

Определение 2 (Порядок). Мы пишем m Ј n , если для некоторого k: n = m + k.

1.16 0 Ј n.

1.17 n Ј n.

1.18 n Ј n'.

1.19 n Ј 0 тогда и только тогда, когда n = 0.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]