
- •1. ПРЕДЫСТОРИЯ
- •2. НАЧАЛО ИСТОРИИ ЯДЕРНОЙ ФИЗИКИ
- •3. ЭПОХА ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ИДЕЙ ЯДЕРНОЙ ФИЗИКИ
- •4. СОВРЕМЕННАЯ ЯДЕРНАЯ ФИЗИКА
- •5. РАЗВИТИЕ МЕТОДОВ РЕГИСТРАЦИИ ИЗЛУЧЕНИЙ
- •6. РАЗВИТИЕ УСКОРИТЕЛЬНОЙ ТЕХНИКИ
- •7. РАЗВИТИЕ РЕАКТОРОСТРОЕНИЯ
- •1. ОСНОВНОЙ ЗАКОН РАДИОАКТИВНОГО РАСПАДА
- •2. СТАТИСТИКА РАСПАДА
- •3. РАСПАД СМЕСИ РАДИОНУКЛИДОВ
- •4. ПРОЦЕССЫ НАКОПЛЕНИЯ И РАСПАДА ГЕНЕТИЧЕСКИ СВЯЗАННЫХ РАДИОНУКЛИДОВ
- •4.1 Цепочка из двух изотопов
- •4.2 Цепочки из трёх и более изотопов
- •4.3 Радиоактивные равновесия
- •4.3.1 Случай отсутствия равновесия
- •4.3.2 Подвижное равновесие
- •4.3.3 Вековое равновесие
- •4.4 Разветвленный распад
- •4.5 Степень равновесности
- •4.6 Примеры радиоактивных распадов
- •1. ПРИМЕРЫ РАДИОАКТИВНЫХ СЕМЕЙСТВ
- •1.1 Семейства урана, тория и актиния
- •1.2 Семейство нептуния
- •2. ПРИРОДНЫЕ РАДИАКТИВНЫЕ СЕМЕЙСТВА
- •3. ТЕХНОГЕННЫЕ РАДИОНУКЛИДЫ – РОДОНАЧАЛЬНИКИ ЕСТЕСТВЕННЫХ РЯДОВ
- •4. ОТКРЫТОСТЬ СИСТЕМЫ И СДВИГИ РАДИОАКТИВНЫХ РАВНОВЕСИЙ
- •5. КОНЦЕПЦИЯ ЭКВИВАЛЕНТНОСТИ РАДИОТОКСИЧНОСТИ ПРИРОДНЫХ И РЕАКТОРНЫХ РАДИОАКТИВНЫХ СЕМЕЙСТВ
- •6. РАДИОАКТИВНЫЕ ЦЕПОЧКИ ТЕХНОГЕННЫХ НУКЛИДОВ
- •1. ЯВЛЕНИЕ ИЗОТОПИИ
- •1.1 Историческая справка
- •1.2 Изотопы и изобары
- •1.3 Применение изотопов
- •2. ЯДЕРНО-ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ИЗОТОПОВ
- •3. КОММЕРЧЕСКИЕ РАДИОАКТИВНЫЕ ИЗОТОПЫ
- •4. ИЗОТОПНЫЕ ЭФФЕКТЫ
- •5. АНАЛИЗ ИЗОТОПНОГО СОСТАВА
- •6. РАЗДЕЛЕНИЕ ИЗОТОПОВ
- •6.1 Общие замечания
- •6.2 Газовая диффузия
- •6.3 Диффузия в потоке пара (противопоточная масс-диффузия)
- •6.4 Термодиффузия
- •6.5 Газовое центрифугирование
- •6.6 Электромагнитное разделение.
- •6.7 Химическое обогащение
- •6.8 Аэродинамическая сепарация
- •6.9 AVLIS (испарение с использованием лазера).
- •6.10 Дистилляция
- •6.11 Электролиз
- •6.12 Изотопный обмен
- •7. ПРОИЗВОДСТВО ИЗОТОПОВ
- •7.1 Производство стабильных изотопов
- •7.2 Получение изотопов в ядерных реакторах
- •7.3 Получение изотопов на ускорителях
- •1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ И ЕГО ПОЛЕ
- •2. ВИДЫ ИЗЛУЧЕНИЙ
- •2.1. Корпускулярное излучение
- •2.1.1 Альфа-излучение
- •2.1.2 Протонное излучение
- •2.1.3 Нейтронное излучение
- •2.1.4 Электронное излучение
- •2.1.5 Бета-излучение
- •2.2 Космическое излучение.
- •2.3 Электромагнитное излучение
- •2.3.1 Рентгеновское излучение
- •2.3.2 Гамма излучение
- •2.3.3 Тормозное излучение
- •2.3.4 Излучение Черенкова-Вавилова
- •2.3.5 Синхотронное излучение
- •2.3.6 Переходное излучение
- •3. СВОЙСТВА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- •4. ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- •4.1 Терминология: радиоактивные источники излучений и их характеристики
- •4.2 Классификация источников излучения.
- •4.2.1 Источники рентгеновского излучения.
- •4.2.2 Ускорители
- •4.2.3 Нейтронные источники
- •1. ПРОХОЖДЕНИЕ ИЗЛУЧЕНИЯ СКВОЗЬ ВЕЩЕСТВО
- •1.1 Терминология: взаимодействие ионизирующих излучений со средой
- •1.2 Типы взаимодействия излучения с веществом
- •1.3 Ионизация и возбуждение
- •2. ВЗАИМОДЕЙСТВИЕ ТЯЖЕЛЫХ ЧАСТИЦ С ВЕЩЕСТВОМ
- •2.1 Взаимодействие заряженной частицы с электроном
- •2.2 Ионизация и возбуждение атома
- •2.3 Тормозная способность
- •2.4 Пробег
- •3. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРОНОВ С ВЕЩЕСТВОМ
- •3.1 Потери энергии движущимися электронами
- •3.2 Эффективный пробег электронов
- •3.4 Каскадный ливень
- •4.1 Процессы поглощения гамма-излучения
- •4.2 Поглощение гамма-излучения.
- •5. ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ВЕЩЕСТВОМ
- •1. ЯДЕРНЫЕ РЕАКЦИИ С УЧАСТИЕМ НЕЙТРОНОВ
- •1.1 Радиационный захват нейтрона
- •1.2 Реакции с образованием протонов
- •1.4 Реакции деления под действием нейтронов
- •1.6 Неупругое рассеяние нейтронов
- •1.7 Упругое рассеяние нейтронов
- •2. ЯДЕРНЫЕ РЕАКЦИИ С УЧАСТИЕМ ЗАРЯЖЕННЫХ ЧАСТИЦ
- •2.2 Реакции под действием протонов
- •2.3 Ядерные реакции под действием заряженных частиц, ускоренных при высоких энергиях
- •2.4 Ядерные реакции с тяжёлыми ионами
- •2.5 Ядерные реакции с участием электронов, мюонов, мезонов, гиперонов и античастиц
- •3. ФОТОЯДЕРНЫЕ РЕАКЦИИ
- •4. ТЕРМОЯДЕРНЫЕ РЕАКЦИИ
- •1. КЛАССИФИКАЦИЯ ЯДЕРНЫХ РЕАКЦИЙ
- •2. ЗАКОНЫ СОХРАНЕНИЯ В ЯДЕРНЫХ РЕАКЦИЯХ
- •2.1 Барионный заряд
- •2.2 Энергия и импульс
- •2.3 Закон сохранения импульса
- •2.4 Момент количества движения
- •2.5 Чётность
- •2.6 Изотопический спин
- •3. КИНЕТИКА И ВЫХОД ЯДЕРНОЙ РЕАКЦИИ
- •3.1 Сечение ядерной реакции
- •3.2 Скорость ядерной реакции
- •4. МЕХАНИЗМЫ ЯДЕРНЫХ РЕАКЦИЙ
- •4.1 Модель составного ядра
- •4.2 Оптическая модель
- •4.3 Модель прямых механизмов
- •1. ВЫНУЖДЕННОЕ ДЕЛЕНИЕ ЯДЕР
- •1.1 Особенности процесса деления
- •1.2 Жидкокапельная модель ядра в описании деления
- •1.3 Оболочечная модель ядра в интерпретации процесса деления
- •2. ПРОЦЕСС ВЫНУЖДЕННОГО ДЕЛЕНИЯ
- •2.1 Вероятность деления
- •2.2 Стадии процесса деления
- •2.3 Энергетика процесса деления
- •2.4 Продукты деления
- •1. ЦЕПНЫЕ ПРОЦЕССЫ
- •1.1 Цепные реакции в химии
- •1.2 Ядерные цепные реакции
- •1. 3 Цепная реакция деления
- •1.4 Ядерный взрыв
- •1.5 Ядерная безопасность
- •2 КРИТИЧЕСКАЯ МАССА
- •3. ЯДЕРНЫЕ РЕАКЦИИ В АТОМНОЙ БОМБЕ
- •3.1 Урановый заряд
- •3.1.1 Делящиеся изотопы урана
- •3.1.2 Устройство и принцип работы урановой атомной бомбы
- •3.2 Плутониевый заряд
- •4 НЕЙТРОННОЕ ОРУЖИЕ
- •1. ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ С ВЕЩЕСТВОМ
- •1.1 Свойства нейтронов
- •1.2 Свойства нейтронов различных энергий
- •1.3 Замедление нейтронов
- •1.4 Замедлители нейтронов
- •1.5 Диффузия нейтронов
- •1.6 Альбедо нейтронов
- •2. НЕЙТРОНЫ В ЯДЕРНОМ РЕАКТОРЕ
- •2.1 Генерация нейтронов
- •2.2 Радиационный захват
- •2.3 Рассеяние нейтронов в реакторе
- •2.4 Основные характеристики нейтронных полей
- •2.5 Размножение нейтронов
- •2.6 Критичность реактора
- •2.7 Распространение нейтронов в среде
- •3. УПРАВЛЕНИЕ ЯДЕРНЫМ РЕАКТОРОМ
- •3.1 Реактивность реактора
- •3.2 Нейтронный цикл
- •3.3 Управление реактором на тепловых нейтронах
- •1. ИСТОРИЯ АТОМИЗМА
- •2. ОБЩАЯ ХАРАКТЕРИСТИКА
- •2.1 Размеры атома
- •2.2 Масса атома
- •2.3 Заряд ядра атома
- •2.4 Внутренняя энергия атома
- •3. ВНУТРЕННЕЕ СТРОЕНИЕ АТОМА
- •3.1 Атом Бора
- •3.2 Теория атома водорода
- •3.3 Квантовомеханическая теория сложных атомов
- •3.4 Электронные оболочки атома и периодическая система элементов
- •4. АТОМНЫЕ ПРОЦЕССЫ
- •4.1 Ионизация
- •4.2 Эмиссия рентгеновского излучения
- •1. РАСПРОСТРАНЕНИЕ ЭЛЕМЕНТОВ И ИЗОТОПОВ
- •2. НАЧАЛЬНЫЙ НУКЛЕОСИНТЕЗ
- •3. ЭВОЛЮЦИЯ ЗВЁЗД
- •4. СКОРОСТЬ ТЕРМОЯДЕРНЫХ РЕАКЦИЙ
- •5. ЗВЁЗДНЫЙ НУКЛЕОСИНТЕЗ
- •5.1 Ядерные реакции в звёздном нуклеосинтезе
- •5.3 Горение гелия
- •5.4 Синтез ядер с А<60
- •5.5 Синтез ядер с А>60
- •5.5.1 s-Процесс
- •5.5.3 р-Процесс
- •6. ПРОБЛЕМА СОЛНЕЧНОГО НЕЙТРИНО
- •6.1 Ожидаемые источники солнечного нейтрино, энергии и потоки
- •6.2 Детектирование нейтрино
- •6.3 Проблема солнечного нейтрино
- •7. СИНТЕЗ Li, Be и B
- •1. ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА
- •1.1 Термодинамика ядерного синтеза
- •1.2 Реакции ядерного синтеза
- •1.3 Термоядерные топлива
- •2. ТЕРМОЯДЕРНЫЙ СИНТЕЗ В ЗЕМНЫХ УСЛОВИЯХ
- •2.1 Водородная бомба
- •2.2 Термоядерный синтез в тепловом урановом реакторе
- •3. УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ
- •3.1 Временные и температурные условия
- •3.2 Магнитное удержание плазмы
- •3.2.1 Плазма
- •3.2.2 Плазма и УТС
- •3.2.3 Системы с замкнутой магнитной конфигурацией
- •3.2.4 Открытые магнитные конфигурации
- •4. УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ
- •4.1 Токамак
- •4.2 Пинч с обращенным полем (ПОП)
- •4.3 Стелларатор
- •4.4 Открытая ловушка
- •4.5 Плазменный фокус
- •4.6 Галатея
- •5. УСТАНОВКИ ИНЕРЦИОННОГО СИНТЕЗА
- •6. ВОДОРОДНАЯ БОМБА
- •1. АКТИВАЦИОННЫЙ АНАЛИЗ
- •1.1 Основы метода
- •1.2 Практика нейтронно-активационного анализа
- •1.2.2 Анализ наведённой активности
- •1.3 Применения активационного анализа.
- •1.4 Преимущества и недостатки активационного анализа
- •2. РЕНТГЕНОВСКИЙ ЭМИССИОННЫЙ АНАЛИЗ
- •3. РЕЗЕРФОРДОВСКОЕ ОБРАТНОЕ РАССЕЯНИЕ
- •1. ОСОБЕННОСТИ КВАНТОВОЙ МЕХАНИКИ
- •2. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ
- •3. ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ ГЕЙЗЕНБЕРГА
- •4. МАТЕМАТИЧЕСКИЙ АППАРАТ КВАНТОВОЙ МЕХАНИКИ
- •4.1 Уравнение Шрёдингера
- •4.2 Волновая функция
- •4.3 Потенциальная яма
- •5. ПРИНЦИП ПАУЛИ
- •6. РАСПРЕДЕЛЕНИЯ
- •6.1 Распределение Максвелла-Больцмана
- •6.2 Распределение Бозе-Эйнштейна
- •6.3 Распределение Ферми-Дирака
- •1. АТОМНОЕ ЯДРО – общие сведения
- •2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЯДРА
- •2.1 Открытие ядра
- •2.2 Заряд атомного ядра
- •2.3 Масса атомного ядра
- •2.4 Размеры ядра и распределение плотности ядерной материи
- •2.5 Спин и магнитный момент ядра
- •Как и составляющие его нуклоны, ядро имеет собственные моменты: спин, магнитный момент и электрический квадрупольный момент.
- •2.6 Энергия связи и устойчивость ядер
- •2.7 Электрический момент ядра
- •2.8 Чётность
- •2.9 Изоспин нуклонов и ядер
- •3. ЯДЕРНЫЕ СИЛЫ
- •1. МОДЕЛИ СТРОЕНИЯ АТОМНОГО ЯДРА
- •1.1 Классификация моделей
- •1.2 История развития моделей ядра
- •2. КАПЕЛЬНАЯ МОДЕЛЬ СТРОЕНИЯ ЯДРА
- •3. ОБОЛОЧЕЧНАЯ МОДЕЛЬ ЯДРА
- •3.1 Экспериментальное обоснование оболочечной модели
- •3.2 Построение оболочечной модели
- •3.3 Ядерные потенциалы и энергетические уровни ядра
- •3.4 Систематика энергетических уровней
- •3.5 Следствия оболочечной модели
- •1. ЧАСТИЦЫ
- •2. КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
- •3. СВОЙСТВА НЕКОТОРЫХ ФУНДАМЕНТАЛЬНЫХ ЧАСТИЦ
- •3.1 Фотон
- •3.2 Протон
- •3.3 Нейтрон
- •3.4 Нейтрино
- •4. КВАРКИ
- •5. ЯДЕРНЫЕ ВЗАИМОДЕЙСТИЯ
- •5.1 Виды взаимодействий
- •5.2 Сильные взаимодействия
- •5.3 Квантовая хромодинамика
- •6. АНТИМАТЕРИЯ
- •1. РАДИОАКТИВНОСТЬ
- •2. ИСТОРИЧЕСКАЯ СПРАВКА
- •3. СТАТИСТИКА РАСПАДА
- •4. ЗАКОНЫ СОХРАНЕНИЯ В РАСПАДАХ
- •5.1 Долина ядерной стабильности
- •5.2 Новые тяжёлые элементы
- •5.3 «Доводородные» элементы
- •5.4 «Экзотические» ядра
- •5.5 На пути к нейтронной материи
- •1. РАДИОАКТИВНЫЙ РАСПАД И ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ
- •2. ОСНОВНЫЕ ТИПЫ ЯДЕРНЫХ ПРЕВРАЩЕНИЙ
- •2.1 Альфа-распад
- •2.1.1 Основные особенности
- •2.2 Бета - распад
- •2.2.3 Электронный захват
- •2.3.1 Внутренняя конверсия электронов
- •2.3.2 Ядерная изомерия
- •1. КЛАССИФИКАЦИЯ ПРОЦЕССОВ РАСПАДА
- •2. СПОНТАННОЕ ДЕЛЕНИЕ
- •2.1 Самопроизвольное деление тяжёлых ядер
- •2.2 Механизм деления
- •2.3 Энергетика спонтанного деления
- •2.4 Продукты деления
- •2.5 Спонтанное деление из изомерного состояния
- •3. ПРОТОННАЯ РАДИОАКТИВНОСТЬ
- •4. НЕЙТРОННАЯ РАДИОАКТИВНОСТЬ
- •7. ЗАПАЗДЫВАЮЩЕЕ ДЕЛЕНИЕ
- •8. КЛАСТЕРНАЯ РАДИОАКТИВНОСТЬ
- •9. БЕТА-РАСПАД ПОЛНОСТЬЮ ИОНИЗИРОВАННОГО АТОМА

Мощность ядерного заряда, работающего исключительно на принципах деления тяжёлых элементов, ограничивается сотнями килотонн. Создать более мощный заряд, основанный только на делении ядер, если и возможно, то крайне затруднительно: увеличение массы делящегося вещества не решает проблему, так как начавшийся взрыв распыляет часть топлива, оно не успевает прореагировать полностью и оказывается бесполезным, лишь увеличивая массу боеприпаса и радиоактивное поражение местности. Самый мощный в мире боеприпас, основанный только на делении ядер, испытан в США 15.10.52, мощность взрыва 500 кт.
4 НЕЙТРОННОЕ ОРУЖИЕ
Нейтронное оружие – разновидность ядерного оружия, в котором искусственно увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения. Предназначено для поражения живой силы и вооружения противника при ограничения поражающих воздействий ударной волны и светового излучения. Относится к оружию массового поражения.
Нейтронное оружие - термоядерные заряды сравнительно небольшой мощности, с высоким коэффициентом термоядерности, тротиловым эквивалентом в пределах 1–10 килотонн и повышенным выходом нейтронного излучения. При взрыве такого заряда за счет особой его конструкции достигается уменьшение доли энергии, преобразуемой в ударную волну и световое излучение, зато возрастает количество энергии, выделяемой в виде потока нейтронов высокой энергии (порядка 14 Мэв).
Замечание. Принципиальное отличие устройства N-бомбы заключается в скорости выделения энергии. В нейтронной бомбе выделение энергии происходит гораздо медленнее, чем в водородной бомбе.
Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80% энергии взрыва составляет энергия потока быстрых нейтронов, и только 20% приходится на остальные поражающие факторы (ударную волну, электромагнитное и световое излучение). При срабатывании заряда на каждую килотонну мощности выделяется 1024 нейтронов. Взрыв такого заряда сопровождается также выделением значительного количества гамма-квантов, которые усиливают его поражающее действие.
Рис. 6. Схема N-бомбы.
Нейтронное оружие строится на принципе водородной бомбы, но во многих аспектах существенной отличается от неё. Для инициирования атомного взрыва используется не 239Pu, а короткоживущие активно делящиеся актиниды с малой критической массой, термоядерную реакцию ведут не на дейтериде лития, а на тритии, оболочка бомбы выполняется из материала, не поглощающего нейтроны, существенно улучшены отражатели нейтронов, все материалы
подвергаются глубокой очистке.
Сильные потоки высокоэнергетических нейтронов возникают в ходе термоядерных реакций, например, горения дейтерий-тритиевой плазмы:
D + T → 4He (3.5 MэВ) + n (14.1 MэВ). (13)
Примером является боеголовка W-70-mod-0, с максимальным энерговыходом 1 кт, из которых 75% образуется за счет реакций синтеза, 25% - деления. Отношение (3:1) означает, что на одну реакцию деления (~180 МэВ) приходится 31 реакция синтеза (~540 МэВ) D+T, что подразумевает беспрепятственный выход 97% нейтронов синтеза, т.е. без их взаимодействия с ураном пускового заряда. Поэтому синтез должен происходить в физически отделенной от первичного заряда капсуле.
Отметим, что при температуре, развиваемой 250-тонным взрывом и нормальной плотности дейтериево - тритиевая смесь не будет гореть с высоким КПД. Термоядерное горючие должно быть предварительно сжато в 10 раз, чтобы реакция прошла достаточно быстро. Поэтому в нейтронных зарядах используется схема имплозии. В отличии от классических термоядерных зарядов, где в качестве термоядерного топлива находится дейтерид лития, вышеприведенная реакция имеет свои преимущества: 1) несмотря на дороговизну и нетехнологичность трития эту реакция легко поджечь; 2) большинство энергии, 80% - выходит в виде высокоэнергетических нейтронов 14.1 MeV, и только 20% - в виде тепла и гама- и рентгеновского излучения. Из особенностей конструкции стоит отметить отсутствие плутониевого запального стержня. Из-за малого
количества термоядерного топлива и низкой температуры начала реакции необходимость в нем отсутствует. Зажигание реакции происходит в центре капсулы, где в результате схождения ударной волны развивается высокое давление и температура. Общее количество делящихся материалов для 1-кт нейтронной бомбы 10 кг. 750-тонный энергетический выход синтеза обеспечивают 10 граммов дейтерий-тритиевой смеси. Газ можно сжать до плотности 0.25 г/см3, т.о. объем капсулы 40 см3 (шарик 5-6 см в диаметре).
Удельный выход нейтронов K в процессе деления составляет:
|
|
|
σ |
c |
|
|
Nn ≈ (ϑ −1) |
= |
|
|
N f ≡ KN f , |
(14) |
|
|
|
|
||||
|
|
σ f |
|
|||
|
|
|
|
|
|
|
где υ- число вторичных нейтронов, образующихся в одном акте деления; σf и σc и - эффективные сечения деления ядер и нейтронного захвата в делящейся среде, Nn - число наработанных нейтронов; Nf - число делений.
Удельный выход K = Nn/Nf - верхняя характеристика возможностей чисто ядерных зарядов, поскольку определенная часть нейтронов, выходящая из делящейся среды, будет энергетически ослаблена и поглощена во внешних частях бомбы. При использовании конкретных данных можно оценить K = 2 для 239Pu и K = 1,5 для 235U. Принимая условно среднее значение K = 1,75, получим, что удельный выход нейтронов из чисто ядерных зарядов не превышает 2,65·1023 н/кт. При этом нейтронный спектр не будет жестче спектра деления ядер, и средняя энергия нейтронов не превосходит En= 2,1 МэВ. Для термоядерного горючего в виде ДТсмеси в условиях, когда роль термоядерных реакций дейтерий+ дейтерий мала, все определяется процессом T+D = n + He-4 + 17,6 МэВ. При этом энергия термоядерного нейтрона составляет En=14.1 МэВ, а остальные 3,5 МэВ приходятся на энергию ядер 4Не. Удельный выход нейтронов в данном процессе составляет Nn=1,48·1024 н/кт при учете собственной энергии нейтронов. По сравнению с чисто ядерным процессом, термоядерный процесс дает выигрыш в удельном выходе нейтронов 6 - 30 раз, и при этом энергия нейтрона в 6,7 раз выше. Это - верхние оценки, поскольку часть нейтронов будет замедлена и поглощена внутри N- бомбы.
Проблема создания автономного термоядерного заряда ("чистой бомбы") до сих пор не решена и поэтому "нейтронная бомба", использующая термоядерное горение, по определению представляет собой двухстадийный ядерный заряд, в котором энерговыделение первичного модуля основано на процессе деления, а энерговыделение вторичного модуля основано на термоядерном горении. Таким образом, при фиксированном общем энерговыделении двух ядерных зарядов удельный выход нейтронов термоядерного заряда уменьшен по сравнению с предельными характеристиками, из-за вклада в общее энерговыделение доли ядерного первичного модуля.
Пусть энерговыделение первичного и вторичного модулей одинаково, и термоядерное энерговыделение дает половину общего энерговыделения термоядерной реакции в 17,6 МэВ. Тогда удельный выход нейтронов N- бомбы 1,65·1024 н/кт. Поэтому переход от чисто ядерных зарядов к нейтронной бомбе позволяет при равном энерговыделении увеличить выход нейтронов в шесть раз.
Зона разрушений при взрыве мала, тогда как зона полного уничтожения всего живого может достигать радиуса 2 км - за счет биологического действия сверхбыстрых нейтронов с энергией 1014-1017 эВ. На расстоянии 900 м от центра взрыва доза нейтронного облучения может равняться 80000 рад, 1400 м - 650 рад, 1700 м - 150 рад, 2,3 км - 1,5 рад. Быстрые нейтроны обладают в 7 раз большей биологической эффективностью, чем гамма-лучи. Заметим, что нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для 1 кт заряда имеет радиус 1 км.
При движении в атмосфере в результате столкновений нейтронов и γ-квантов с атомами газов они постепенно теряют свою энергию. Степень их ослабления при этом характеризуется длиной релаксации – расстоянием, на котором их поток ослабевает в е-раз. Чем больше длина релаксации, тем медленнее происходит ослабление излучения в воздухе. Для нейтронов и гамма-излучения длина релаксации в воздухе у поверхности земли составляет 235 и 350 м соответственно. В силу разных значений длины релаксации нейтронов и γ-квантов с увеличением расстояния от эпицентра взрыва постепенно меняется их соотношение между собой в общем потоке излучения. На сравнительно недалеких расстояниях от места взрыва доля нейтронов значительно преобладает над долей γ-квантов, но по мере удаления от него это соотношение постепенно изменяется и для заряда мощностью в 1 кт их потоки сравниваются на расстоянии около 1500 м, а затем гамма-излучение будет преобладать.
Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или γ-излучение, не говоря уже об α- и β- частицах. Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в укрытиях, даже там, где обеспечивается надёжная защита от обычного ядерного взрыва.
Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни. На людей действует как само нейтронное излучение, так и наведённая радиация. В технике под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва. Так, например, экипаж танка, находящегося в 700 м от эпицентра нейтронного взрыва мощностью в 1 кт, мгновенно получит безусловно смертельную дозу облучения и погибнет в течение нескольких минут. Но если этот танк после взрыва начать использовать снова (физически он почти не пострадает), то наведённая радиоактивность приведёт к получению новым экипажем смертельной дозы радиации в течение суток. Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности, невелика. Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно - излучение всё равно не дойдёт дальше, а прочие поражающие факторы окажутся снижены.
Табл. 17. Распределение энергии взрыва по поражающим факторам, %
|
|
|
|
|
Поражающие факторы |
|
Нейтронный боеприпас |
|
Ядерный боеприпас |
|
|
|
|
|
Ударная волна |
|
40 |
|
50 |
|
|
|
|
|
Световое излучение |
|
25 |
|
35 |
|
|
|
|
|
Проникающая радиация |
|
30 |
|
4 |
|
|
|
|
|
Радиоактивное заражение местности |
|
5 |
|
10 |
|
|
|
|
|
Электромагнитный импульс |
|
- |
|
1 |
|
|
|
|
|
Ударная волна - область резкого сжатия воздуха, распределяющаяся во все стороны от эпицентра. Световое излучение - электромагнитное излучение в УФ, видимой и ИК областях спектра. Проникающая радиация - поток гамма-излучения и нейтронов, испускаемых из зоны и облака ядерного взрыва. Радиоактивное заражение - заражение поверхности земли, атмосферы, водоемов, предметов РВ, выпавшими из облака. Электромагнитный импульс - мощное электромагнитное излучение, сопровождающее ядерный взрыв.