
- •1. ПРЕДЫСТОРИЯ
- •2. НАЧАЛО ИСТОРИИ ЯДЕРНОЙ ФИЗИКИ
- •3. ЭПОХА ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ИДЕЙ ЯДЕРНОЙ ФИЗИКИ
- •4. СОВРЕМЕННАЯ ЯДЕРНАЯ ФИЗИКА
- •5. РАЗВИТИЕ МЕТОДОВ РЕГИСТРАЦИИ ИЗЛУЧЕНИЙ
- •6. РАЗВИТИЕ УСКОРИТЕЛЬНОЙ ТЕХНИКИ
- •7. РАЗВИТИЕ РЕАКТОРОСТРОЕНИЯ
- •1. ОСНОВНОЙ ЗАКОН РАДИОАКТИВНОГО РАСПАДА
- •2. СТАТИСТИКА РАСПАДА
- •3. РАСПАД СМЕСИ РАДИОНУКЛИДОВ
- •4. ПРОЦЕССЫ НАКОПЛЕНИЯ И РАСПАДА ГЕНЕТИЧЕСКИ СВЯЗАННЫХ РАДИОНУКЛИДОВ
- •4.1 Цепочка из двух изотопов
- •4.2 Цепочки из трёх и более изотопов
- •4.3 Радиоактивные равновесия
- •4.3.1 Случай отсутствия равновесия
- •4.3.2 Подвижное равновесие
- •4.3.3 Вековое равновесие
- •4.4 Разветвленный распад
- •4.5 Степень равновесности
- •4.6 Примеры радиоактивных распадов
- •1. ПРИМЕРЫ РАДИОАКТИВНЫХ СЕМЕЙСТВ
- •1.1 Семейства урана, тория и актиния
- •1.2 Семейство нептуния
- •2. ПРИРОДНЫЕ РАДИАКТИВНЫЕ СЕМЕЙСТВА
- •3. ТЕХНОГЕННЫЕ РАДИОНУКЛИДЫ – РОДОНАЧАЛЬНИКИ ЕСТЕСТВЕННЫХ РЯДОВ
- •4. ОТКРЫТОСТЬ СИСТЕМЫ И СДВИГИ РАДИОАКТИВНЫХ РАВНОВЕСИЙ
- •5. КОНЦЕПЦИЯ ЭКВИВАЛЕНТНОСТИ РАДИОТОКСИЧНОСТИ ПРИРОДНЫХ И РЕАКТОРНЫХ РАДИОАКТИВНЫХ СЕМЕЙСТВ
- •6. РАДИОАКТИВНЫЕ ЦЕПОЧКИ ТЕХНОГЕННЫХ НУКЛИДОВ
- •1. ЯВЛЕНИЕ ИЗОТОПИИ
- •1.1 Историческая справка
- •1.2 Изотопы и изобары
- •1.3 Применение изотопов
- •2. ЯДЕРНО-ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ИЗОТОПОВ
- •3. КОММЕРЧЕСКИЕ РАДИОАКТИВНЫЕ ИЗОТОПЫ
- •4. ИЗОТОПНЫЕ ЭФФЕКТЫ
- •5. АНАЛИЗ ИЗОТОПНОГО СОСТАВА
- •6. РАЗДЕЛЕНИЕ ИЗОТОПОВ
- •6.1 Общие замечания
- •6.2 Газовая диффузия
- •6.3 Диффузия в потоке пара (противопоточная масс-диффузия)
- •6.4 Термодиффузия
- •6.5 Газовое центрифугирование
- •6.6 Электромагнитное разделение.
- •6.7 Химическое обогащение
- •6.8 Аэродинамическая сепарация
- •6.9 AVLIS (испарение с использованием лазера).
- •6.10 Дистилляция
- •6.11 Электролиз
- •6.12 Изотопный обмен
- •7. ПРОИЗВОДСТВО ИЗОТОПОВ
- •7.1 Производство стабильных изотопов
- •7.2 Получение изотопов в ядерных реакторах
- •7.3 Получение изотопов на ускорителях
- •1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ И ЕГО ПОЛЕ
- •2. ВИДЫ ИЗЛУЧЕНИЙ
- •2.1. Корпускулярное излучение
- •2.1.1 Альфа-излучение
- •2.1.2 Протонное излучение
- •2.1.3 Нейтронное излучение
- •2.1.4 Электронное излучение
- •2.1.5 Бета-излучение
- •2.2 Космическое излучение.
- •2.3 Электромагнитное излучение
- •2.3.1 Рентгеновское излучение
- •2.3.2 Гамма излучение
- •2.3.3 Тормозное излучение
- •2.3.4 Излучение Черенкова-Вавилова
- •2.3.5 Синхотронное излучение
- •2.3.6 Переходное излучение
- •3. СВОЙСТВА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- •4. ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- •4.1 Терминология: радиоактивные источники излучений и их характеристики
- •4.2 Классификация источников излучения.
- •4.2.1 Источники рентгеновского излучения.
- •4.2.2 Ускорители
- •4.2.3 Нейтронные источники
- •1. ПРОХОЖДЕНИЕ ИЗЛУЧЕНИЯ СКВОЗЬ ВЕЩЕСТВО
- •1.1 Терминология: взаимодействие ионизирующих излучений со средой
- •1.2 Типы взаимодействия излучения с веществом
- •1.3 Ионизация и возбуждение
- •2. ВЗАИМОДЕЙСТВИЕ ТЯЖЕЛЫХ ЧАСТИЦ С ВЕЩЕСТВОМ
- •2.1 Взаимодействие заряженной частицы с электроном
- •2.2 Ионизация и возбуждение атома
- •2.3 Тормозная способность
- •2.4 Пробег
- •3. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРОНОВ С ВЕЩЕСТВОМ
- •3.1 Потери энергии движущимися электронами
- •3.2 Эффективный пробег электронов
- •3.4 Каскадный ливень
- •4.1 Процессы поглощения гамма-излучения
- •4.2 Поглощение гамма-излучения.
- •5. ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ВЕЩЕСТВОМ
- •1. ЯДЕРНЫЕ РЕАКЦИИ С УЧАСТИЕМ НЕЙТРОНОВ
- •1.1 Радиационный захват нейтрона
- •1.2 Реакции с образованием протонов
- •1.4 Реакции деления под действием нейтронов
- •1.6 Неупругое рассеяние нейтронов
- •1.7 Упругое рассеяние нейтронов
- •2. ЯДЕРНЫЕ РЕАКЦИИ С УЧАСТИЕМ ЗАРЯЖЕННЫХ ЧАСТИЦ
- •2.2 Реакции под действием протонов
- •2.3 Ядерные реакции под действием заряженных частиц, ускоренных при высоких энергиях
- •2.4 Ядерные реакции с тяжёлыми ионами
- •2.5 Ядерные реакции с участием электронов, мюонов, мезонов, гиперонов и античастиц
- •3. ФОТОЯДЕРНЫЕ РЕАКЦИИ
- •4. ТЕРМОЯДЕРНЫЕ РЕАКЦИИ
- •1. КЛАССИФИКАЦИЯ ЯДЕРНЫХ РЕАКЦИЙ
- •2. ЗАКОНЫ СОХРАНЕНИЯ В ЯДЕРНЫХ РЕАКЦИЯХ
- •2.1 Барионный заряд
- •2.2 Энергия и импульс
- •2.3 Закон сохранения импульса
- •2.4 Момент количества движения
- •2.5 Чётность
- •2.6 Изотопический спин
- •3. КИНЕТИКА И ВЫХОД ЯДЕРНОЙ РЕАКЦИИ
- •3.1 Сечение ядерной реакции
- •3.2 Скорость ядерной реакции
- •4. МЕХАНИЗМЫ ЯДЕРНЫХ РЕАКЦИЙ
- •4.1 Модель составного ядра
- •4.2 Оптическая модель
- •4.3 Модель прямых механизмов
- •1. ВЫНУЖДЕННОЕ ДЕЛЕНИЕ ЯДЕР
- •1.1 Особенности процесса деления
- •1.2 Жидкокапельная модель ядра в описании деления
- •1.3 Оболочечная модель ядра в интерпретации процесса деления
- •2. ПРОЦЕСС ВЫНУЖДЕННОГО ДЕЛЕНИЯ
- •2.1 Вероятность деления
- •2.2 Стадии процесса деления
- •2.3 Энергетика процесса деления
- •2.4 Продукты деления
- •1. ЦЕПНЫЕ ПРОЦЕССЫ
- •1.1 Цепные реакции в химии
- •1.2 Ядерные цепные реакции
- •1. 3 Цепная реакция деления
- •1.4 Ядерный взрыв
- •1.5 Ядерная безопасность
- •2 КРИТИЧЕСКАЯ МАССА
- •3. ЯДЕРНЫЕ РЕАКЦИИ В АТОМНОЙ БОМБЕ
- •3.1 Урановый заряд
- •3.1.1 Делящиеся изотопы урана
- •3.1.2 Устройство и принцип работы урановой атомной бомбы
- •3.2 Плутониевый заряд
- •4 НЕЙТРОННОЕ ОРУЖИЕ
- •1. ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ С ВЕЩЕСТВОМ
- •1.1 Свойства нейтронов
- •1.2 Свойства нейтронов различных энергий
- •1.3 Замедление нейтронов
- •1.4 Замедлители нейтронов
- •1.5 Диффузия нейтронов
- •1.6 Альбедо нейтронов
- •2. НЕЙТРОНЫ В ЯДЕРНОМ РЕАКТОРЕ
- •2.1 Генерация нейтронов
- •2.2 Радиационный захват
- •2.3 Рассеяние нейтронов в реакторе
- •2.4 Основные характеристики нейтронных полей
- •2.5 Размножение нейтронов
- •2.6 Критичность реактора
- •2.7 Распространение нейтронов в среде
- •3. УПРАВЛЕНИЕ ЯДЕРНЫМ РЕАКТОРОМ
- •3.1 Реактивность реактора
- •3.2 Нейтронный цикл
- •3.3 Управление реактором на тепловых нейтронах
- •1. ИСТОРИЯ АТОМИЗМА
- •2. ОБЩАЯ ХАРАКТЕРИСТИКА
- •2.1 Размеры атома
- •2.2 Масса атома
- •2.3 Заряд ядра атома
- •2.4 Внутренняя энергия атома
- •3. ВНУТРЕННЕЕ СТРОЕНИЕ АТОМА
- •3.1 Атом Бора
- •3.2 Теория атома водорода
- •3.3 Квантовомеханическая теория сложных атомов
- •3.4 Электронные оболочки атома и периодическая система элементов
- •4. АТОМНЫЕ ПРОЦЕССЫ
- •4.1 Ионизация
- •4.2 Эмиссия рентгеновского излучения
- •1. РАСПРОСТРАНЕНИЕ ЭЛЕМЕНТОВ И ИЗОТОПОВ
- •2. НАЧАЛЬНЫЙ НУКЛЕОСИНТЕЗ
- •3. ЭВОЛЮЦИЯ ЗВЁЗД
- •4. СКОРОСТЬ ТЕРМОЯДЕРНЫХ РЕАКЦИЙ
- •5. ЗВЁЗДНЫЙ НУКЛЕОСИНТЕЗ
- •5.1 Ядерные реакции в звёздном нуклеосинтезе
- •5.3 Горение гелия
- •5.4 Синтез ядер с А<60
- •5.5 Синтез ядер с А>60
- •5.5.1 s-Процесс
- •5.5.3 р-Процесс
- •6. ПРОБЛЕМА СОЛНЕЧНОГО НЕЙТРИНО
- •6.1 Ожидаемые источники солнечного нейтрино, энергии и потоки
- •6.2 Детектирование нейтрино
- •6.3 Проблема солнечного нейтрино
- •7. СИНТЕЗ Li, Be и B
- •1. ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА
- •1.1 Термодинамика ядерного синтеза
- •1.2 Реакции ядерного синтеза
- •1.3 Термоядерные топлива
- •2. ТЕРМОЯДЕРНЫЙ СИНТЕЗ В ЗЕМНЫХ УСЛОВИЯХ
- •2.1 Водородная бомба
- •2.2 Термоядерный синтез в тепловом урановом реакторе
- •3. УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ
- •3.1 Временные и температурные условия
- •3.2 Магнитное удержание плазмы
- •3.2.1 Плазма
- •3.2.2 Плазма и УТС
- •3.2.3 Системы с замкнутой магнитной конфигурацией
- •3.2.4 Открытые магнитные конфигурации
- •4. УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ
- •4.1 Токамак
- •4.2 Пинч с обращенным полем (ПОП)
- •4.3 Стелларатор
- •4.4 Открытая ловушка
- •4.5 Плазменный фокус
- •4.6 Галатея
- •5. УСТАНОВКИ ИНЕРЦИОННОГО СИНТЕЗА
- •6. ВОДОРОДНАЯ БОМБА
- •1. АКТИВАЦИОННЫЙ АНАЛИЗ
- •1.1 Основы метода
- •1.2 Практика нейтронно-активационного анализа
- •1.2.2 Анализ наведённой активности
- •1.3 Применения активационного анализа.
- •1.4 Преимущества и недостатки активационного анализа
- •2. РЕНТГЕНОВСКИЙ ЭМИССИОННЫЙ АНАЛИЗ
- •3. РЕЗЕРФОРДОВСКОЕ ОБРАТНОЕ РАССЕЯНИЕ
- •1. ОСОБЕННОСТИ КВАНТОВОЙ МЕХАНИКИ
- •2. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ
- •3. ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ ГЕЙЗЕНБЕРГА
- •4. МАТЕМАТИЧЕСКИЙ АППАРАТ КВАНТОВОЙ МЕХАНИКИ
- •4.1 Уравнение Шрёдингера
- •4.2 Волновая функция
- •4.3 Потенциальная яма
- •5. ПРИНЦИП ПАУЛИ
- •6. РАСПРЕДЕЛЕНИЯ
- •6.1 Распределение Максвелла-Больцмана
- •6.2 Распределение Бозе-Эйнштейна
- •6.3 Распределение Ферми-Дирака
- •1. АТОМНОЕ ЯДРО – общие сведения
- •2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЯДРА
- •2.1 Открытие ядра
- •2.2 Заряд атомного ядра
- •2.3 Масса атомного ядра
- •2.4 Размеры ядра и распределение плотности ядерной материи
- •2.5 Спин и магнитный момент ядра
- •Как и составляющие его нуклоны, ядро имеет собственные моменты: спин, магнитный момент и электрический квадрупольный момент.
- •2.6 Энергия связи и устойчивость ядер
- •2.7 Электрический момент ядра
- •2.8 Чётность
- •2.9 Изоспин нуклонов и ядер
- •3. ЯДЕРНЫЕ СИЛЫ
- •1. МОДЕЛИ СТРОЕНИЯ АТОМНОГО ЯДРА
- •1.1 Классификация моделей
- •1.2 История развития моделей ядра
- •2. КАПЕЛЬНАЯ МОДЕЛЬ СТРОЕНИЯ ЯДРА
- •3. ОБОЛОЧЕЧНАЯ МОДЕЛЬ ЯДРА
- •3.1 Экспериментальное обоснование оболочечной модели
- •3.2 Построение оболочечной модели
- •3.3 Ядерные потенциалы и энергетические уровни ядра
- •3.4 Систематика энергетических уровней
- •3.5 Следствия оболочечной модели
- •1. ЧАСТИЦЫ
- •2. КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
- •3. СВОЙСТВА НЕКОТОРЫХ ФУНДАМЕНТАЛЬНЫХ ЧАСТИЦ
- •3.1 Фотон
- •3.2 Протон
- •3.3 Нейтрон
- •3.4 Нейтрино
- •4. КВАРКИ
- •5. ЯДЕРНЫЕ ВЗАИМОДЕЙСТИЯ
- •5.1 Виды взаимодействий
- •5.2 Сильные взаимодействия
- •5.3 Квантовая хромодинамика
- •6. АНТИМАТЕРИЯ
- •1. РАДИОАКТИВНОСТЬ
- •2. ИСТОРИЧЕСКАЯ СПРАВКА
- •3. СТАТИСТИКА РАСПАДА
- •4. ЗАКОНЫ СОХРАНЕНИЯ В РАСПАДАХ
- •5.1 Долина ядерной стабильности
- •5.2 Новые тяжёлые элементы
- •5.3 «Доводородные» элементы
- •5.4 «Экзотические» ядра
- •5.5 На пути к нейтронной материи
- •1. РАДИОАКТИВНЫЙ РАСПАД И ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ
- •2. ОСНОВНЫЕ ТИПЫ ЯДЕРНЫХ ПРЕВРАЩЕНИЙ
- •2.1 Альфа-распад
- •2.1.1 Основные особенности
- •2.2 Бета - распад
- •2.2.3 Электронный захват
- •2.3.1 Внутренняя конверсия электронов
- •2.3.2 Ядерная изомерия
- •1. КЛАССИФИКАЦИЯ ПРОЦЕССОВ РАСПАДА
- •2. СПОНТАННОЕ ДЕЛЕНИЕ
- •2.1 Самопроизвольное деление тяжёлых ядер
- •2.2 Механизм деления
- •2.3 Энергетика спонтанного деления
- •2.4 Продукты деления
- •2.5 Спонтанное деление из изомерного состояния
- •3. ПРОТОННАЯ РАДИОАКТИВНОСТЬ
- •4. НЕЙТРОННАЯ РАДИОАКТИВНОСТЬ
- •7. ЗАПАЗДЫВАЮЩЕЕ ДЕЛЕНИЕ
- •8. КЛАСТЕРНАЯ РАДИОАКТИВНОСТЬ
- •9. БЕТА-РАСПАД ПОЛНОСТЬЮ ИОНИЗИРОВАННОГО АТОМА
Профессор И.Н.Бекман
ЯДЕРНАЯ ФИЗИКА
Лекция 14. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ
Проблемой взаимодействия ядерного излучением с веществом занимаются такие науки, как радиационная физика, радиационная химия, радиология и др.
Радиационная физика – занимается исследованием процессов переноса ядерных излучений через вещество. Существенное внимание уделяется процессам прохождения и отражения (альбедо) излучения и всевозможным ядерным реакциям между излучением и элементами, составляющими вещество, оценке угловых и энергетических распределений рассеянного и образовавшегося в защитной среде вторичного нейтронного и фотонного излучения, методологии измерений нейтронного и фотонного излучений. Физические исследования направлены на расчеты доз, поглощенных конструкционными материалами, и на расчет оптимальных конструкций защитных барьеров.
Радиационная химия - область химии, в которой изучаются химические процессы, возбуждаемые действием ионизирующих излучений. Основное применение: радиационная модификация веществ и материалов; разработка способов их защиты от разрушения; использование ионизирующих излучений в химической технологии для радиационно-химического синтеза органических, в том числе высокомолекулярных веществ и др.
Радиобиология - наука о действии всех видов ионизирующих излучений на организмы и их сообщества. Радиобиология занимается оценкой доз, получаемых изысканием различных средств защиты организма от излучений и путей его пострадиационного восстановления от повреждений, прогнозированием опасности для человечества повышения уровня радиации окружающей среды, изысканием новых путей использования ионизирующих излучений в медицине, сельском хозяйстве, пищевой и микробиологической промышленности.
Некоторые аспекты взаимодействия излучения используются в радиометрии, ядерной медицине, радиоэкологии, экологической радиохимии, радиогеохимии и других разделах науки и техники.
В данной лекции мы рассмотрим особенности поглощения таких видов излучений, как пучки ускоренных протонов, альфа частиц, нейтронов, электронов, гамма- и рентгеновского излучения твердыми телами.
1. ПРОХОЖДЕНИЕ ИЗЛУЧЕНИЯ СКВОЗЬ ВЕЩЕСТВО
1.1 Терминология: взаимодействие ионизирующих излучений со средой
Энергия излучения, переданная веществу, - разность между суммарной энергией всех заряженных и незаряженных частиц (без учета энергии покоя), входящих в данный объем вещества, и суммарной энергией всех частиц, выходящих из этого объема, плюс изменение энергий, связанное с массой покоя частиц при ядерных превращениях, происходящих в объеме.
Сечение взаимодействия ионизирующих частиц (сечение взаимодействия) - вероятность взаимодействия ионизирующих частиц с одним атомом, электроном, ядром атома или всеми атомами (электронами, ядрами), находящимися в данном объеме вещества.
Замечание. Вероятность взаимодействия характеризуется площадью поперечного сечения такой воображаемой сферы, условно приписываемой бомбардируемой частице (атому, электрону, ядру), проходя через которую бомбардирующие частицы участвуют в реакциях или процессах взаимодействия определенного типа с бомбардируемой частицей. Это сечение взаимодействия часто называют парциальным.
Полное сечение взаимодействия - сумма всех сечений взаимодействия, ионизирующих частиц данного вида, соответствующих различным процессам или реакциям.
Замечание. Указанные сечения взаимодействия, отнесенные к одному атому, электрону или ядру атома, называют микроскопическими, а отнесенные ко всем атомам (электронам, ядрам атомов), находящимся в единице объема вещества (т. е. к концентрации частиц-мишеней), называют макроскопическими.
Линейный коэффициент ослабления - полное макроскопическое сечение взаимодействия косвенно ионизирующих частиц или отношение доли и dN/N косвенно ионизирующих частиц, испытавших взаимодействие при прохождении пути dl в веществе к длине этого пути:μ=μ/ρ(dN/dl).
Замечание. Массовый коэффициент ослабления излучения μт, на единице массы вещества выражается через линейный коэффициент μ и атомный коэффициент μа: μт= μа(NА/А).
Слой половинного ослабления излучения - толщина слоя вещества, ослабляющего узкий (или широкий) пучок мононаправленного излучения в 2 раза: ∆1/2.
Длина релаксации - толщина l слоя вещества, ослабляющего пучок мононаправленного излучения в е раз (е - основание натуральных логарифмов): l = ∆1/2./0,693.
Примечание. Для нейтронов обычно используют длину релаксации, измеренную в геометрии широкого пучка. Линейный коэффициент передачи энергии μtr - отношение доли энергий dω/ω косвенно ионизирующего излучения (исключая энергию покоя частиц), которая преобразуется в кинетическую энергию заряженных частиц при прохождении элементарного пути dl в веществе, к длине этого пути: μtr=(1/ω) (dω/dl)
Примечание. Массовый коэффициент передачи энергии μtr,т, выражается через линейный: μtr,т=μtr/ρ, где ρ - плотность вещества.
Линейный коэффициент поглощения энергии μ*en - произведение линейного коэффициента передачи энергии μtr, на разность между единицей и долей g энергии вторичных заряженных частиц, переходящей в тормозное излучение в данном
веществе: μen = μtr (1 - g)'
Примечание. Массовый коэффициент поглощения энергии μen,m выражается через линейный: μen.m=μen/ρ =μtr.m (1 - g).
1.2 Типы взаимодействия излучения с веществом
Процесс прохождения ионизирующего излучения, несущего большой запас энергии, через вещество, оставляет свой след в виде изменений структуры вещества.
Ионизирующее излучение (радиация) – поток частиц или квантов электромагнитного излучения, взаимодействие которого с веществом приводит к ионизации и возбуждению его атомов и молекул. К ионизирующему излучению относятся потоки электронов, позитронов, протонов, дейтронов, α-частиц и др. заряженных частиц, а также потоки нейтронов, рентгеновское и гамма-излучение.
При прохождении через вещество частицы взаимодействуют с атомами, из которых оно состоит, т.е. электронами и атомными ядрами (или нуклонами ядер). Характер взаимодействия излучения с веществом зависит от его вида, энергии, плотности потока, а также от физических и химических свойств самого вещества. Ядерные реакции с веществом происходят при взаимодействии с нейтронным излучением. Существенно заметное протекание ядерных реакций на ядрах атомов вещества возможно лишь при значительных потоках α- и β-частиц, γ-квантах больших энергий (более 1,02 МэВ) и при наличии в веществе ядер с большими сечениях конкретных ядерных реакций (например, фотоядерных). В большинстве же случаев энергия ионизирующего излучения расходуется на взаимодействие с электронными оболочками всех атомов вещества.
Взаимодействие ионизирующего излучения с веществом бывает двух типов: упругое и неупругое.
Упругое рассеяние частиц – процесс столкновения частиц, в результате которого меняются только их импульсы, а внутреннее состояния остаются неизменным.
Неупругое рассеяние частиц – столкновение частиц, приводящее к изменению их внутреннего состояния, превращению в другие частицы или дополнительному рождению новых частиц.
Ионизирующие излучения в виде α- и β-частиц при неупругом взаимодействии с электронными оболочками атомов среды сопровождается потерей энергии ионизирующего излучения на ионизацию и возбуждение атомов среды, т.е. оказывает прямое ионизирующее действие на вещество, в котором распространяется. Взаимодействие β-излучения с электронными оболочками атомов среды иногда называют косвенно ионизирующим излучением.
Количественно ионизирующее действие излучения характеризуют удельной ионизацией. Отметим, что удельная ионизация, создаваемая γ-излучением, приблизительно в 5*104 раз меньше удельной ионизации от α- частиц и 50 раз меньше удельной ионизации от β-частиц такой же энергии. Для количественной характеристики энергии ионизирующего излучения, поглощенной в единице массы облучаемого вещества, введена величина, называемая поглощенной дозой ионизирующего излучения. В зависимости от поглощенной дозы ионизирующего излучения нарушается структура вещества, в частности, степень действия ионизирующего излучения на конструкционные материалы и другие объекты.
От характера взаимодействия ионизирующего излучения с конкретным веществом зависит проникающая способность ионизирующего излучения. Эта величина имеет важное значение для решения ряда задач: прогностического расчета изменения свойств конструкционных материалов, защиты от ионизирующего излучения, регистрации излучения и др.

Рис. 1. Схема, иллюстрирующая ионизирующую способность и проникновение различных видов излучений в вещество (биологическая ткань, вода)
1.3 Ионизация и возбуждение
Ионизация и возбуждение - первый результат действия излучения на вещество.
Ионизация – превращение атомов или молекул в положительные ионы в результате отрыва одного или нескольких электронов.
Ионизации также могут подвергаться положительные ионы, что приводит к увеличению кратности их заряда. Энергия, необходимая для отрыва электрона, называется энергией ионизации. Ионизация происходит при поглощении электромагнитного излучения (фотоионизация), при нагревании газа (термическая ионизация), при воздействии электрического поля (полевая ионизация), при столкновении частиц с электронами,
ионами, атомами (столкновительная ионизация) и др. Нейтральные атомы и молекулы могут в особых случаях присоединять электроны, образуя отрицательные ионы.
Возбужденное состояние квантово-механической системы – неустойчивое состояние с энергией, превышающей энергию основного состояния.
Энергия излучения, проходящего через вещество, теряется при столкновениях главным образом с электронами. Электрон в атоме движется и удерживается на том или ином расстоянии от ядра благодаря действию двух равных, но противоположных сил - силы притяжения между отрицательно заряженным электроном и положительным ядром и центробежной силой отталкивания, возникающей в результате движения вокруг ядра. Если электрон при столкновении с частицей излучения получил значительное ускорение, он может преодолеть силу притяжения к ядру и покинуть атом и молекулу. Молекула при этом превращается в положительный ион. Процесс потери электрона атомом или молекулой называют ионизацией, а ядерные излучения по этой причине часто называют ионизирующими. Если же ускорение недостаточно для ионизации, результатом столкновения явится изменение «орбиты» такого электрона, увеличение расстояния электрона от ядра, т.е. увеличение потенциальной энергии электрона, «возбуждение» атома или молекулы. Получившуюся при этом молекулу называют электронно-возбужденной или просто возбужденной. Такой процесс могут вызывать не только ионизирующие излучения, но и свет.
Ионы, выбитые электроны и возбужденные молекулы - вот что в первый момент оставляют на своем пути излучения. Этот первый результат действия излучения на молекулу можно символически записать так: М→М++е, М→М*, понимая под М молекулу, электрон которой удален в результате столкновения с частицей излучения; М+ - ион, получившийся при этом, который называют молекулярным, а М* - возбужденная молекула, символ → обозначает действие излучения. Время жизни этих первичных продуктов действия излучения на вещество крайне мало - 10-12 - 10-6 сек и лишь в некоторых случаях несколько больше, однако их существование надежно доказано, а поведение изучается экспериментально.
Доказательством образования заряженных частиц - ионов и электронов - является тот факт, что вещества, обычно являющиеся изоляторами - воздух, стекло, пластики - в поле излучения становятся проводниками электричества и, в тем большей степени, чем больше интенсивность излучения. Стоит облучение прекратить, и проводимость резко упадет.
+
-