
- •План лекционных занятий дисциплины "Теория автоматического управления"
- •Литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Предмет, проблематика, задачи и цель дисциплины "Теория автоматического управления Основные понятия и определения
- •Классификация систем автоматического регулирования
- •Составление исходных дифференциальных уравнений сау Общая форма записи систем ду
- •Форма Коши
- •Пространство состояний
- •Ду решенное относительно регулируемой величины y(t) - уравнение движения
- •Ду решенное относительно ошибки X(t) - уравнение ошибки
- •Передаточные функции сау
- •Другие связывающие отношения
- •Линеаризация ду сар
- •Суть линеаризации
- •Особенности линеаризованного уравнения
- •Геометрическая трактовка линеаризации
- •Запись линеаризованных уравнений в стандартных для тау формах
- •Описание сар в частотном представлении Частотная передаточная функция
- •35 Частотные характеристики
- •Амплитудно-фазовая (частотная) характеристика или годограф Найквиста
- •Логарифмические чх - лачх & лфчх
- •Правила построения асимптотических лачх & лфчх
- •Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
- •Типовые динамические звенья
- •Правила преобразования структурных схем линейных систем
- •Последовательное соединение
- •Параллельное согласное соединение
- •Принцип управления по внешнему возмущению
- •А) разомкнутая сар с жестким управлением
- •Б) разомкнутая сар с управлением по возмущению
- •Принцип управления по отклонению
- •Замкнутая сар с управлением по отклонению
- •Работа системы в статике
- •Работа системы в динамике
- •Комбинированное управление
- •Комбинированная схема с управлением по отклонению и возмущению
- •Системы экстремального управления
- •Программы и законы регулирования Программа регулирования
- •Закон регулирования
- •Линейные непрерывные законы регулирования
- •Пропорциональное регулирование
- •Интегральное регулирование
- •Интегральное регулирование по второму интегралу от ошибки
- •Изодромное регулирование - pi
- •Регулирование с использованием производных
- •Устойчивость сау
- •Математический признак устойчивости.
- •Определение устойчивости по м. Я. Ляпунову
- •Понятие о характеристическом уравнении
- •Условие устойчивости. Типы границы устойчивости
- •Критерии устойчивости линейных сау.
- •Необходимое условие устойчивости сар, достаточное только для систем 1-ого и 2-ого порядков
- •Критерий устойчивости Гурвица
- •Критерий Рауса
- •Критерий устойчивости Михайлова
- •Свойства годографа Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Критерий устойчивости Найквиста
- •Свойства годографа Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •54 Определение устойчивости по логарифмическим частотным характеристикам
- •Построение областей устойчивости - d-разбиение
- •Оценка качества регулирования
- •47 Точность в типовых режимах
- •Сигналы задания для типовых режимов движения, их модели и изображения по Карсону-Хевисайду
- •Ошибки статической системы
- •Ошибки системы с астатизмом первого порядка
- •Ошибки системы с астатизмом второго порядка
- •О компенсации помех в астатических системах
- •Коэффициенты ошибок
- •44 Оценка запаса устойчивости и быстродействия по переходной характеристике
- •Корневые методы оценки качества
- •Понятие о среднегеометрическом корне 0. Мажоранта и миноранта переходной функции
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Частотные критерии качества
- •Оценка запаса устойчивости
- •Оценка быстродействия сар
- •Повышение точности сар
- •Повышение точности систем увеличением коэффициента усиления
- •Повышение точности систем увеличением порядка астатизма
- •Повышение точности систем применением регулирования по производным от ошибки
- •Повышение точности систем применением комбинированного управления
- •Снижение ошибки от сигнала задания введением сигнала ку на входе регулятора
- •Снижение ошибки от сигнала задания введением сигнала ку после регулятора
- •Снижение ошибки от возмущающего сигнала применением ку
- •Повышение точности систем применением неединичных обратных связей
- •Повышение точности систем применением масштабирующих устройств на входе или выходе
- •Синтез сар Синтез системы
- •Метод логарифмических амплитудных характеристик
- •Требования к нч части желаемой лачх Оценка точности сар по воспроизведению гармонического сигнала
- •Формирование запретной нч области для желаемой лачх
- •Построение нч части желаемой лачх
- •Требования к вч части желаемой лачх
- •Построение вч части желаемой лачх
- •Корневой метод синтеза
- •Метод корневых годографов
- •Системы с переменными параметрами Система линейная с переменными параметрами
- •Пример параметрической сар
- •Понятие о параметрической функции веса. Нахождение реакции параметрической сар на произвольное воздействие
- •Отыскание пф системы с var-параметрами
- •Устойчивость и качество регулирования систем с var-параметрами
- •Синтез параметрических сар
- •Системы с запаздыванием Система линейная с запаздыванием
- •Пример системы с транспортным запаздыванием
- •Пф звена чистого запаздывания
- •Аппроксимация звена чистого запаздывания
- •Размыкание систем с запаздыванием
- •Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Дифференцирование и интегрирование решетчатых функций
- •Разностные уравнения
- •Типовая структура импульсной системы. Понятие об импульсном фильтре
- •Обобщенная модель импульсного элемента
- •Приведенные весовая и передаточная функции разомкнутой импульсной системы
- •Дискретная пф
- •Правила преобразования структурных схем дискретных систем
- •Устойчивость и качество импульсных систем
- •Цифровые системы
- •Процессы протекающие в системах цу
- •Методика вывода дискретных пф
- •О синтезе систем с цвм методом логарифмических амплитудных характеристик
- •Цифровая коррекция
- •Цифровые регуляторы
- •Алгоритмы программ цифровых фильтров
- •Об эффекте квантования параметров
- •Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
- •Широтно-импульсный преобразователь.
- •Измерительные преобразователи и датчики. Датчик тока
- •Датчики скорости
- •Датчики положения механизма.
- •Электромеханические преобразователи
- •Электродвигатель постоянного тока
- •Асинхронный электродвигатель
- •Бесконтактный электродвигатель
- •Механические системы.
- •50 Понятие об управляемости системы и ее наблюдаемости.
- •Наблюдающие устройства.
- •Наблюдающие устройства Льюинбергера
- •Наблюдающее устройство идентификации
- •Редуцированное устройство идентификации.
- •Вопросы.
- •Словарь терминов
- •Практические работы
- •Вопросы:
Правила построения асимптотических лачх & лфчх
Правила построения асимптотических ЛАЧХ & ЛФЧХ, точнее каждого слагаемого выражения (2) показаны на рисунках.
Точность асимптотических ЛАЧХ & ЛФЧХ достаточна в большинстве случаев. Для звеньев первого порядка максимальная амплитудная ошибка вблизи частоты сопряжения составляет 3 дБ. Максимальная фазовая ошибка - 6%. Фрагмент ЧХ колебательного звена вблизи резонансной частоты лишь иногда следует уточнить по опорным справочным кривым для данного .
Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
Единичная
ступенчатая функция - 1(t)
Математическая функция, заданная условиями: 1(t) = 0 при t < 0, и 1(t) = 1 при t > 0. Для автоматических систем является распространенным видом входного воздействия. Как правило, подобные воздействия сопровождают процессы включения систем и вызывают переходы от одного установившегося состояния к другому.
Дельта-функция
Дирака - (t)
Математическая функция, заданная условиями: при t = 0, и (t) = 0 при t 0, - т.е. это импульс с бесконечной амплитудой, площадь которого принимается равной 1. Для автоматических систем является менее распространенным видом входного воздействия, чем единичная ступенчатая функция. Однако для теоретического описания последних имеет существенное значение. Подобные воздействия характерны для радарных комплексов, описывают передачу импульса при упругом взаимодействии и т.д.
Из определений функций 1(t) и (t) очевидна связь между ними:
1(t) = t) dt и (t) = 1'(t) (1).
Единичная ступенчатая функция 1(t) легка для практической реализации с высокой точностью, однако дельта-функцию Дирака (t) реализовать сложнее. Для теоретического описания систем и их моделирования ее можно грубо представить с помощью двух ступенчатых функций:
(2),
где: N - амплитуда функций, - время, на которое запаздывает вторая ступенчатая функция, при этом N и
Переходная
функция или характеристика - h(t)
Переходный процесс на выходе типового звена или линейной системы, возникающий при подаче на вход единичной ступенчатой функции 1(t).
Функция
веса - w(t)
Переходный процесс на выходе типового звена или линейной системы, возникающий при подаче на вход короткого импульса, который, в приближении, можно рассматривать как дельта-функцию Дирака (t).
В виду независимости присущих линейным системам свойств от внешних воздействий и наличия связи (1) между последними, подобное же отношение существует и для соответствующих типовых реакций:
h(t) = w(t) dt и w(t) = h'(t).
Докажем эту взаимосвязь подав на систему грубую реализацию дельта-функции (2). В этом случае переходный процесс на выходе можно представить следующей суперпозицией:
y(t) = N h(t) - N h(t-),
которая будет являться функцией веса, предел которой (при 0) будет равен производной от переходной функции:
w(t) = lim0( N (h(t) - h(t-)) / ) = h'(t), - напомним: N = 1.
Функция веса связана с передаточной функцией преобразованием Лапласа:
W(s) = o w(t) e -st dt.
Переходная функция связана с передаточной функцией преобразованием Карсона:
W(s) = s o h(t) e -st dt.
Для произвольного входного воздействия, переходный процесс на выходе линейной системы может быть определен на основании интеграла Дюамеля-Карсона, если известны типовые реакции:
h(t): y(t) = x(0) h(t) + ot x'() h(t-) d;
w(t): y(t) = ot x() w(t-) d, - так же "Интеграл свертки";
где: - вспомогательное время интегрирования.