- •План лекционных занятий дисциплины "Теория автоматического управления"
- •Литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Предмет, проблематика, задачи и цель дисциплины "Теория автоматического управления Основные понятия и определения
- •Классификация систем автоматического регулирования
- •Составление исходных дифференциальных уравнений сау Общая форма записи систем ду
- •Форма Коши
- •Пространство состояний
- •Ду решенное относительно регулируемой величины y(t) - уравнение движения
- •Ду решенное относительно ошибки X(t) - уравнение ошибки
- •Передаточные функции сау
- •Другие связывающие отношения
- •Линеаризация ду сар
- •Суть линеаризации
- •Особенности линеаризованного уравнения
- •Геометрическая трактовка линеаризации
- •Запись линеаризованных уравнений в стандартных для тау формах
- •Описание сар в частотном представлении Частотная передаточная функция
- •35 Частотные характеристики
- •Амплитудно-фазовая (частотная) характеристика или годограф Найквиста
- •Логарифмические чх - лачх & лфчх
- •Правила построения асимптотических лачх & лфчх
- •Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
- •Типовые динамические звенья
- •Правила преобразования структурных схем линейных систем
- •Последовательное соединение
- •Параллельное согласное соединение
- •Принцип управления по внешнему возмущению
- •А) разомкнутая сар с жестким управлением
- •Б) разомкнутая сар с управлением по возмущению
- •Принцип управления по отклонению
- •Замкнутая сар с управлением по отклонению
- •Работа системы в статике
- •Работа системы в динамике
- •Комбинированное управление
- •Комбинированная схема с управлением по отклонению и возмущению
- •Системы экстремального управления
- •Программы и законы регулирования Программа регулирования
- •Закон регулирования
- •Линейные непрерывные законы регулирования
- •Пропорциональное регулирование
- •Интегральное регулирование
- •Интегральное регулирование по второму интегралу от ошибки
- •Изодромное регулирование - pi
- •Регулирование с использованием производных
- •Устойчивость сау
- •Математический признак устойчивости.
- •Определение устойчивости по м. Я. Ляпунову
- •Понятие о характеристическом уравнении
- •Условие устойчивости. Типы границы устойчивости
- •Критерии устойчивости линейных сау.
- •Необходимое условие устойчивости сар, достаточное только для систем 1-ого и 2-ого порядков
- •Критерий устойчивости Гурвица
- •Критерий Рауса
- •Критерий устойчивости Михайлова
- •Свойства годографа Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Критерий устойчивости Найквиста
- •Свойства годографа Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •54 Определение устойчивости по логарифмическим частотным характеристикам
- •Построение областей устойчивости - d-разбиение
- •Оценка качества регулирования
- •47 Точность в типовых режимах
- •Сигналы задания для типовых режимов движения, их модели и изображения по Карсону-Хевисайду
- •Ошибки статической системы
- •Ошибки системы с астатизмом первого порядка
- •Ошибки системы с астатизмом второго порядка
- •О компенсации помех в астатических системах
- •Коэффициенты ошибок
- •44 Оценка запаса устойчивости и быстродействия по переходной характеристике
- •Корневые методы оценки качества
- •Понятие о среднегеометрическом корне 0. Мажоранта и миноранта переходной функции
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Частотные критерии качества
- •Оценка запаса устойчивости
- •Оценка быстродействия сар
- •Повышение точности сар
- •Повышение точности систем увеличением коэффициента усиления
- •Повышение точности систем увеличением порядка астатизма
- •Повышение точности систем применением регулирования по производным от ошибки
- •Повышение точности систем применением комбинированного управления
- •Снижение ошибки от сигнала задания введением сигнала ку на входе регулятора
- •Снижение ошибки от сигнала задания введением сигнала ку после регулятора
- •Снижение ошибки от возмущающего сигнала применением ку
- •Повышение точности систем применением неединичных обратных связей
- •Повышение точности систем применением масштабирующих устройств на входе или выходе
- •Синтез сар Синтез системы
- •Метод логарифмических амплитудных характеристик
- •Требования к нч части желаемой лачх Оценка точности сар по воспроизведению гармонического сигнала
- •Формирование запретной нч области для желаемой лачх
- •Построение нч части желаемой лачх
- •Требования к вч части желаемой лачх
- •Построение вч части желаемой лачх
- •Корневой метод синтеза
- •Метод корневых годографов
- •Системы с переменными параметрами Система линейная с переменными параметрами
- •Пример параметрической сар
- •Понятие о параметрической функции веса. Нахождение реакции параметрической сар на произвольное воздействие
- •Отыскание пф системы с var-параметрами
- •Устойчивость и качество регулирования систем с var-параметрами
- •Синтез параметрических сар
- •Системы с запаздыванием Система линейная с запаздыванием
- •Пример системы с транспортным запаздыванием
- •Пф звена чистого запаздывания
- •Аппроксимация звена чистого запаздывания
- •Размыкание систем с запаздыванием
- •Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Дифференцирование и интегрирование решетчатых функций
- •Разностные уравнения
- •Типовая структура импульсной системы. Понятие об импульсном фильтре
- •Обобщенная модель импульсного элемента
- •Приведенные весовая и передаточная функции разомкнутой импульсной системы
- •Дискретная пф
- •Правила преобразования структурных схем дискретных систем
- •Устойчивость и качество импульсных систем
- •Цифровые системы
- •Процессы протекающие в системах цу
- •Методика вывода дискретных пф
- •О синтезе систем с цвм методом логарифмических амплитудных характеристик
- •Цифровая коррекция
- •Цифровые регуляторы
- •Алгоритмы программ цифровых фильтров
- •Об эффекте квантования параметров
- •Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
- •Широтно-импульсный преобразователь.
- •Измерительные преобразователи и датчики. Датчик тока
- •Датчики скорости
- •Датчики положения механизма.
- •Электромеханические преобразователи
- •Электродвигатель постоянного тока
- •Асинхронный электродвигатель
- •Бесконтактный электродвигатель
- •Механические системы.
- •50 Понятие об управляемости системы и ее наблюдаемости.
- •Наблюдающие устройства.
- •Наблюдающие устройства Льюинбергера
- •Наблюдающее устройство идентификации
- •Редуцированное устройство идентификации.
- •Вопросы.
- •Словарь терминов
- •Практические работы
- •Вопросы:
Об эффекте квантования параметров
ПФ цифрового PID-регулятора имеет три коэффициента b0, b1, b2. Заметим, что только один коэффициент b1 содержит информацию о таком параметре регулятора как постоянная времени сопрягающего полюса интегрального канала TIx. Для объяснения сути эффекта квантования параметров рассмотрим не усугубляющий случай плотного расположения сопрягающих полюсов. Пусть TIx = 0,1; TDx = 0,01; при Tц = 0,0003. Рассчитаем коэффициент b1:

Заметим, что для любой системы отклонение любой постоянной времени в два раза не должно иметь критического значения, однако коэффициенты ПФ-ий, как показано, зависят от параметров отличающихся на порядки, поэтому скажем для отношения TDx/Tц, входящего во все коэффициенты числителя ПФ регулятора требуется сохранять мантиссу длиной 5 знакомест (17 двоичных разрядов), поскольку иначе информация о параметре TIx будет потеряна вследствие округления.
Существуют следующие методы преодоления эффекта квантования параметров при ограниченной длине мантиссы ЦВМ:
Развязка параметров посредствам разложения z-ПФ высокого порядка либо на множители, либо на элементарные дроби.
Подбор для реализации z-ПФ структурной схемы среди альтернативных, имеющих разные по плотности сетки возможных положений корней в единичной окружности.
Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
Тиристорный
преобразователь, как элемент САУ,
представляет собой импульсную систему
(СИФУ и выпрямитель ВП), преобразующую
входной управляющий сигнал (напряжение
)
в функцию моментов отпирания тиристоров,
изменяющую напряжение на входе двигателя
,
и описываемую дифференциальным
уравнением:
|
|
(1) |
где
–
постоянная времени тиристорного
преобразователя (
сек
для мостовой полностью управляемой
схемы);
–передаточный
коэффициент тиристорного преобразователя
.
При изменении
напряжения управления на некоторую
величину
изменяется
напряжение на входе двигателя
.
Тогда уравнение (1) примет вид:
![]()
Переходя к операторной форме записи, получаем:
![]()
Отсюда выражение для передаточной функции тиристорного преобразователя принимает вид:
![]()
Широтно-импульсный преобразователь.
Широтно-импульсный
преобразователь (ШИП) представляет
набор электронных ключей, обеспечивающих
импульсное изменение напряжения на
нагрузке, подключенной к выходу этого
преобразователя. В современной технике
частоты коммутации ШИП лежат в пределах
(2—50) кГц. Поэтому запаздывание в такой
системе принимается равным нулю. Во
многих приложениях ШИП представляется
как безинерционный элемент с передаточной
функцией
вида:
,
где
,
–
величины приращений изображений
выходного и входного сигнала ШИП
соответственно.
Более точное представление процессов в САУ, содержащей ШИП, может быть получено с использованием дискретного преобразования Лапласа.
Измерительные преобразователи и датчики. Датчик тока
Датчик тока (измерительный трансформатор тока) с фильтром, как элемент САУ, описывается дифференциальным уравнением вида:
|
|
(2) |
где
–
передаточный коэффициент датчика тока;
–номинальный ток
тиристорного преобразователя;
–постоянная времени
фильтра в обратной связи по току.
При изменении
тока двигателя
изменяется
напряжение на выходе
,
тогда уравнение (2) в приращениях примет
вид:
.
Это уравнение в операторной форме записи представляется как:
.
Тогда передаточная функция датчика тока с фильтром примет вид:
.
Для практических
расчетов можно пренебречь постоянной
времени фильтра (
,
тогда передаточная функция датчика
тока примет вид безинерционного звена:
.
