- •План лекционных занятий дисциплины "Теория автоматического управления"
- •Литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Предмет, проблематика, задачи и цель дисциплины "Теория автоматического управления Основные понятия и определения
- •Классификация систем автоматического регулирования
- •Составление исходных дифференциальных уравнений сау Общая форма записи систем ду
- •Форма Коши
- •Пространство состояний
- •Ду решенное относительно регулируемой величины y(t) - уравнение движения
- •Ду решенное относительно ошибки X(t) - уравнение ошибки
- •Передаточные функции сау
- •Другие связывающие отношения
- •Линеаризация ду сар
- •Суть линеаризации
- •Особенности линеаризованного уравнения
- •Геометрическая трактовка линеаризации
- •Запись линеаризованных уравнений в стандартных для тау формах
- •Описание сар в частотном представлении Частотная передаточная функция
- •35 Частотные характеристики
- •Амплитудно-фазовая (частотная) характеристика или годограф Найквиста
- •Логарифмические чх - лачх & лфчх
- •Правила построения асимптотических лачх & лфчх
- •Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
- •Типовые динамические звенья
- •Правила преобразования структурных схем линейных систем
- •Последовательное соединение
- •Параллельное согласное соединение
- •Принцип управления по внешнему возмущению
- •А) разомкнутая сар с жестким управлением
- •Б) разомкнутая сар с управлением по возмущению
- •Принцип управления по отклонению
- •Замкнутая сар с управлением по отклонению
- •Работа системы в статике
- •Работа системы в динамике
- •Комбинированное управление
- •Комбинированная схема с управлением по отклонению и возмущению
- •Системы экстремального управления
- •Программы и законы регулирования Программа регулирования
- •Закон регулирования
- •Линейные непрерывные законы регулирования
- •Пропорциональное регулирование
- •Интегральное регулирование
- •Интегральное регулирование по второму интегралу от ошибки
- •Изодромное регулирование - pi
- •Регулирование с использованием производных
- •Устойчивость сау
- •Математический признак устойчивости.
- •Определение устойчивости по м. Я. Ляпунову
- •Понятие о характеристическом уравнении
- •Условие устойчивости. Типы границы устойчивости
- •Критерии устойчивости линейных сау.
- •Необходимое условие устойчивости сар, достаточное только для систем 1-ого и 2-ого порядков
- •Критерий устойчивости Гурвица
- •Критерий Рауса
- •Критерий устойчивости Михайлова
- •Свойства годографа Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Критерий устойчивости Найквиста
- •Свойства годографа Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •54 Определение устойчивости по логарифмическим частотным характеристикам
- •Построение областей устойчивости - d-разбиение
- •Оценка качества регулирования
- •47 Точность в типовых режимах
- •Сигналы задания для типовых режимов движения, их модели и изображения по Карсону-Хевисайду
- •Ошибки статической системы
- •Ошибки системы с астатизмом первого порядка
- •Ошибки системы с астатизмом второго порядка
- •О компенсации помех в астатических системах
- •Коэффициенты ошибок
- •44 Оценка запаса устойчивости и быстродействия по переходной характеристике
- •Корневые методы оценки качества
- •Понятие о среднегеометрическом корне 0. Мажоранта и миноранта переходной функции
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Частотные критерии качества
- •Оценка запаса устойчивости
- •Оценка быстродействия сар
- •Повышение точности сар
- •Повышение точности систем увеличением коэффициента усиления
- •Повышение точности систем увеличением порядка астатизма
- •Повышение точности систем применением регулирования по производным от ошибки
- •Повышение точности систем применением комбинированного управления
- •Снижение ошибки от сигнала задания введением сигнала ку на входе регулятора
- •Снижение ошибки от сигнала задания введением сигнала ку после регулятора
- •Снижение ошибки от возмущающего сигнала применением ку
- •Повышение точности систем применением неединичных обратных связей
- •Повышение точности систем применением масштабирующих устройств на входе или выходе
- •Синтез сар Синтез системы
- •Метод логарифмических амплитудных характеристик
- •Требования к нч части желаемой лачх Оценка точности сар по воспроизведению гармонического сигнала
- •Формирование запретной нч области для желаемой лачх
- •Построение нч части желаемой лачх
- •Требования к вч части желаемой лачх
- •Построение вч части желаемой лачх
- •Корневой метод синтеза
- •Метод корневых годографов
- •Системы с переменными параметрами Система линейная с переменными параметрами
- •Пример параметрической сар
- •Понятие о параметрической функции веса. Нахождение реакции параметрической сар на произвольное воздействие
- •Отыскание пф системы с var-параметрами
- •Устойчивость и качество регулирования систем с var-параметрами
- •Синтез параметрических сар
- •Системы с запаздыванием Система линейная с запаздыванием
- •Пример системы с транспортным запаздыванием
- •Пф звена чистого запаздывания
- •Аппроксимация звена чистого запаздывания
- •Размыкание систем с запаздыванием
- •Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Дифференцирование и интегрирование решетчатых функций
- •Разностные уравнения
- •Типовая структура импульсной системы. Понятие об импульсном фильтре
- •Обобщенная модель импульсного элемента
- •Приведенные весовая и передаточная функции разомкнутой импульсной системы
- •Дискретная пф
- •Правила преобразования структурных схем дискретных систем
- •Устойчивость и качество импульсных систем
- •Цифровые системы
- •Процессы протекающие в системах цу
- •Методика вывода дискретных пф
- •О синтезе систем с цвм методом логарифмических амплитудных характеристик
- •Цифровая коррекция
- •Цифровые регуляторы
- •Алгоритмы программ цифровых фильтров
- •Об эффекте квантования параметров
- •Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
- •Широтно-импульсный преобразователь.
- •Измерительные преобразователи и датчики. Датчик тока
- •Датчики скорости
- •Датчики положения механизма.
- •Электромеханические преобразователи
- •Электродвигатель постоянного тока
- •Асинхронный электродвигатель
- •Бесконтактный электродвигатель
- •Механические системы.
- •50 Понятие об управляемости системы и ее наблюдаемости.
- •Наблюдающие устройства.
- •Наблюдающие устройства Льюинбергера
- •Наблюдающее устройство идентификации
- •Редуцированное устройство идентификации.
- •Вопросы.
- •Словарь терминов
- •Практические работы
- •Вопросы:
Цифровая коррекция
Цифровая или дискретная коррекция весьма интересна с практической точки зрения в силу конструктивной универсальности устройств и гибкости настройки. Решения задач коррекции предполагают модификации низкочастотного и среднечастотного фрагментов ЛАЧХ, как правило, с уменьшением частоты среза ср. Известно, что в этом диапазоне системы с ЦВМ и их ЛАЧХ - L() не отличаются существенно по свойствам от непрерывных аналогов. Поэтому методика синтеза коррекции едина для цифровых и непрерывных систем. Проектирование же дискретной коррекции ведется в четыре этапа.
Синтез ПФ непрерывного корректирующего устройства Wк(s) по методикам разработанным для непрерывных систем.
Переход от непрерывной ПФ корректирующего устройства Wк(s) к эквивалентной дискретной Wк(z) посредствам последовательных переходов по изображениям:
,
с помощью результирующей формулы билинейного преобразования (т.е. формальной подстановки):

где: Tц - период дискретизации ЦВМ.
Составление структурной схемы дискретной ПФ Wк(z), оптимизированной при реализации по объёму памяти, быстродействию или для контроля промежуточных фазовых координат системы.
Написание программы для ЦВМ (периферийный контроллер, микроЭВМ, ЭВМ, цифровой сигнальный процессор - DSP) или разработка схемы на цифровых микросхемах.
![]()
Заметим, что из непрерывной ПФ можно получить бесконечное количество вариантов дискретной ПФ, при разных периодах дискретизации ЦВМ (этап 2).
Обычно частоту дискретизации fц=1/Tц выбирают в 6..10 раз больше частоты среза fср разомкнутой системы. Первоначально частоту дискретизации выбирают большой (fц=10..30fср), за тем, за две три попытки стремятся ее уменьшить (т.е. повторяют этап 2). При низких частотах дискретизации качество переходного процесса ухудшается настолько (в сравнении с непрерывной коррекцией), что платить за это понижением производительности ЦВМ не представляется возможным. Соответствующую ПФ Wк(z) используют в дальнейшем.
При синтезе ПФ Wк(s) или Wк(z) необходимо, что бы степень числителя Wк(s) не была больше степени знаменателя или свободный коэффициент a0 в знаменателе ПФ Wк(z) не был нулевым, иначе невозможно реализовать программу.
Если требуется обратный переход от Wк(z)НЧ к Wк(s)НЧ следует воспользоваться обратной формулой билинейного преобразования:

Этот переход однозначен при известном периоде работы ЦВМ Tц.
Цифровые регуляторы
В непрерывных системах широко используются PID-регуляторы, которые представляются идеализированным уравнением:
.
где: KP - коэффициент усиления пропорционального канала; TIx - постоянная времени сопрягающего полюса интегрального канала; TDx - постоянная времени сопрягающего полюса дифференциального канала.
Для малых периодов
дискретизации Tц
уравнение может быть преобразовано в
разностное без существенной потери в
точности. Непрерывное интегрирование
может быть представлено с помощью метода
прямоугольников
,
или метода трапеций
.
Используем
метод прямоугольников для аппроксимации
непрерывного интеграла и запишем
PID-закон в дискретном виде:
.
В результате получен нерекуррентный (позиционный) алгоритм управления, который требует сохранения всех предыдущих значений сигнала ошибки x[i], и в котором каждый раз заново вычисляется управляющий сигнал u[n].
Для реализации программ закона регулирования на ЦВМ более удобным является рекуррентный алгоритм. Он характеризуется тем, что для вычисления текущего значения сигнала u[n] используется его предыдущее значение u[n-1] и поправочный коэффициент, не требующий существенных вычислительных затрат. Определим его:
.
Перенесем u[n-1] в правую часть - получим "скоростной" алгоритм для программной реализации регулятора:
u[n] = u[n-1] + b0 x[n] + b1 x[n-1] + b2 x[n-2]. (*)
Если
для аппроксимации непрерывного интеграла
использовать метод трапеций, то разностное
уравнение будет иметь вид:
.
Преобразования, аналогичные выше изложенным, при получении рекуррентного соотношения (*), выявляют отличия только для коэффициента b0:
.
Запишем РУ (*) для изображений в z-домене:
U [z] (1- z -1) = (b0 + b1 z -1 + b2 z -1) X [z] ,
и представим его в виде дискретной ПФ:
.
Анализ ее коэффициентов показывает, что:
Для исключения статической ошибки, ПФ должна иметь полюс zx=1.
Если b2 = 0, то получим PI-регулятор.
Если b0 = 0, а b1 = (1 + b2), то получим PD-регулятор.
