
- •План лекционных занятий дисциплины "Теория автоматического управления"
- •Литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Предмет, проблематика, задачи и цель дисциплины "Теория автоматического управления Основные понятия и определения
- •Классификация систем автоматического регулирования
- •Составление исходных дифференциальных уравнений сау Общая форма записи систем ду
- •Форма Коши
- •Пространство состояний
- •Ду решенное относительно регулируемой величины y(t) - уравнение движения
- •Ду решенное относительно ошибки X(t) - уравнение ошибки
- •Передаточные функции сау
- •Другие связывающие отношения
- •Линеаризация ду сар
- •Суть линеаризации
- •Особенности линеаризованного уравнения
- •Геометрическая трактовка линеаризации
- •Запись линеаризованных уравнений в стандартных для тау формах
- •Описание сар в частотном представлении Частотная передаточная функция
- •35 Частотные характеристики
- •Амплитудно-фазовая (частотная) характеристика или годограф Найквиста
- •Логарифмические чх - лачх & лфчх
- •Правила построения асимптотических лачх & лфчх
- •Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
- •Типовые динамические звенья
- •Правила преобразования структурных схем линейных систем
- •Последовательное соединение
- •Параллельное согласное соединение
- •Принцип управления по внешнему возмущению
- •А) разомкнутая сар с жестким управлением
- •Б) разомкнутая сар с управлением по возмущению
- •Принцип управления по отклонению
- •Замкнутая сар с управлением по отклонению
- •Работа системы в статике
- •Работа системы в динамике
- •Комбинированное управление
- •Комбинированная схема с управлением по отклонению и возмущению
- •Системы экстремального управления
- •Программы и законы регулирования Программа регулирования
- •Закон регулирования
- •Линейные непрерывные законы регулирования
- •Пропорциональное регулирование
- •Интегральное регулирование
- •Интегральное регулирование по второму интегралу от ошибки
- •Изодромное регулирование - pi
- •Регулирование с использованием производных
- •Устойчивость сау
- •Математический признак устойчивости.
- •Определение устойчивости по м. Я. Ляпунову
- •Понятие о характеристическом уравнении
- •Условие устойчивости. Типы границы устойчивости
- •Критерии устойчивости линейных сау.
- •Необходимое условие устойчивости сар, достаточное только для систем 1-ого и 2-ого порядков
- •Критерий устойчивости Гурвица
- •Критерий Рауса
- •Критерий устойчивости Михайлова
- •Свойства годографа Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Критерий устойчивости Найквиста
- •Свойства годографа Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •54 Определение устойчивости по логарифмическим частотным характеристикам
- •Построение областей устойчивости - d-разбиение
- •Оценка качества регулирования
- •47 Точность в типовых режимах
- •Сигналы задания для типовых режимов движения, их модели и изображения по Карсону-Хевисайду
- •Ошибки статической системы
- •Ошибки системы с астатизмом первого порядка
- •Ошибки системы с астатизмом второго порядка
- •О компенсации помех в астатических системах
- •Коэффициенты ошибок
- •44 Оценка запаса устойчивости и быстродействия по переходной характеристике
- •Корневые методы оценки качества
- •Понятие о среднегеометрическом корне 0. Мажоранта и миноранта переходной функции
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Частотные критерии качества
- •Оценка запаса устойчивости
- •Оценка быстродействия сар
- •Повышение точности сар
- •Повышение точности систем увеличением коэффициента усиления
- •Повышение точности систем увеличением порядка астатизма
- •Повышение точности систем применением регулирования по производным от ошибки
- •Повышение точности систем применением комбинированного управления
- •Снижение ошибки от сигнала задания введением сигнала ку на входе регулятора
- •Снижение ошибки от сигнала задания введением сигнала ку после регулятора
- •Снижение ошибки от возмущающего сигнала применением ку
- •Повышение точности систем применением неединичных обратных связей
- •Повышение точности систем применением масштабирующих устройств на входе или выходе
- •Синтез сар Синтез системы
- •Метод логарифмических амплитудных характеристик
- •Требования к нч части желаемой лачх Оценка точности сар по воспроизведению гармонического сигнала
- •Формирование запретной нч области для желаемой лачх
- •Построение нч части желаемой лачх
- •Требования к вч части желаемой лачх
- •Построение вч части желаемой лачх
- •Корневой метод синтеза
- •Метод корневых годографов
- •Системы с переменными параметрами Система линейная с переменными параметрами
- •Пример параметрической сар
- •Понятие о параметрической функции веса. Нахождение реакции параметрической сар на произвольное воздействие
- •Отыскание пф системы с var-параметрами
- •Устойчивость и качество регулирования систем с var-параметрами
- •Синтез параметрических сар
- •Системы с запаздыванием Система линейная с запаздыванием
- •Пример системы с транспортным запаздыванием
- •Пф звена чистого запаздывания
- •Аппроксимация звена чистого запаздывания
- •Размыкание систем с запаздыванием
- •Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Дифференцирование и интегрирование решетчатых функций
- •Разностные уравнения
- •Типовая структура импульсной системы. Понятие об импульсном фильтре
- •Обобщенная модель импульсного элемента
- •Приведенные весовая и передаточная функции разомкнутой импульсной системы
- •Дискретная пф
- •Правила преобразования структурных схем дискретных систем
- •Устойчивость и качество импульсных систем
- •Цифровые системы
- •Процессы протекающие в системах цу
- •Методика вывода дискретных пф
- •О синтезе систем с цвм методом логарифмических амплитудных характеристик
- •Цифровая коррекция
- •Цифровые регуляторы
- •Алгоритмы программ цифровых фильтров
- •Об эффекте квантования параметров
- •Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
- •Широтно-импульсный преобразователь.
- •Измерительные преобразователи и датчики. Датчик тока
- •Датчики скорости
- •Датчики положения механизма.
- •Электромеханические преобразователи
- •Электродвигатель постоянного тока
- •Асинхронный электродвигатель
- •Бесконтактный электродвигатель
- •Механические системы.
- •50 Понятие об управляемости системы и ее наблюдаемости.
- •Наблюдающие устройства.
- •Наблюдающие устройства Льюинбергера
- •Наблюдающее устройство идентификации
- •Редуцированное устройство идентификации.
- •Вопросы.
- •Словарь терминов
- •Практические работы
- •Вопросы:
Пример системы с транспортным запаздыванием
Пф звена чистого запаздывания
Свойства звена таковы, что y(t) = x(t-), где - запаздывание, а x(t-) = 0 при 0 < t < .
Разложим правую часть уравнения (т.е. выходной сигнал) в ряд Тейлора:
,
или
,
т.е.:
.
Аппроксимация звена чистого запаздывания
Сравним
переходные функции апериодического
звена с запаздывающим аргументом и
апериодического звена 2-ого порядка:
Поскольку они существенно похожи, в приближенных расчетах можно осуществлять подмены передаточных функций звеньев.
В
некоторых случаях применяется прием
учета большого числаN
звеньев в системе с малыми постоянными
времени Ti
и единичным коэффициентом передачи,
одним звеном с постоянным запаздыванием,
равным сумме этих постоянных времени
= Ti NT.
Т.е.:
Если N, то в пределе получим W(s)e-s. Уже при N=8..10 степень приближения высока. Ряд будет более точно соответствовать разложению в ряд функции e-s, если его представлять не апериодическими, а фазосдвигающими звеньями.
Размыкание систем с запаздыванием
Большинство методов исследования устойчивости или качества систем в качестве входной информации используют ПФ системы для разомкнутого состояния W(s). Звено чистого запаздывания является нелинейным элементом, и затрудняет как аналитический анализ систем, так и машинный (программы математического моделирования не могут выполнять функции анализа для систем с нелинейными элементами). Поэтому либо используют линеаризованные аппроксиматоры звена чистого запаздывания, либо размыкают систему в той ветви, которая содержит звено чистого запаздывания, дабы ПФ имела вид: W(s) = Wo(s) e-s, где Wo(s) - ПФ части системы без запаздывания.
Рассмотрим и разомкнем системы с основными вариантами включения звена чистого запаздывания - последовательным, параллельным и в цепи ОС:
Если звенья чистого запаздывания имеются в разных ветвях структурной схемы, то для исследований используют их аппроксиматоры и машинные методы анализа.
Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
Перейдем в частотный домен:
,
следовательно:
L() = |W(j)| = Ao() 1 = Ao() ,
) = o() - .
Резюме:
Таким образом, наличие звена с запаздыванием не меняет модуля, а лишь вносит дополнительный фазовый сдвиг (-).
Из графика видно, что звено e-s закручивает исходный годограф Wo(j) по часовой стрелке, ухудшая условия устойчивости.
По имеющемуся годографу Wo(j) можно определить критическое значение запаздывания кр:
1 - сркр = -
=>
кр = 1) / ср
В некоторых случаях кр можно рассчитать аналитически.
Устойчивость систем с запаздыванием
Рассмотрим замкнутую систему:
По знаменателю ПФ (j) видно, что в общем случае характеристическое уравнение будет иметь множитель e-s, который определяет возможность наличия бесконечного количества корней (см. петли годографа Михайлова D(j) ).
Как и прежде, для устойчивости все они должны иметь отрицательные вещественные части.
Для устойчивости систем 1-ого и 2-ого порядка с запаздыванием не достаточно положительности коэффициентов.
Для систем 3-его и более порядков не применимы критерии Вышнеградского, Рауса, Гурвица.
Об исследовании точности систем с запаздыванием
По ЧХ звена чистого запаздывания наглядно видно, что его коэффициент передачи во всем частотном диапазоне равен единице. Причем в области низких частот и задержка в звене пренебрежимо мала (т.е. сдвиг фазы стремится к нулю), поэтому при исследовании точности систем с запаздыванием допустимо просто исключить все звенья чистого запаздывания из структурной схемы. Эта операция допустима, поскольку точность любой системы определяет только НЧ часть ее ЧХ.
Импульсные системы
Система импульсная линейная
Линейной системой импульсного регулирования называется такая САР, которая кроме звеньев описываемых обыкновенными линейными ДУ содержит импульсное звено, преобразующее непрерывное входное воздействие в равноотстоящие друг от друга по времени импульсы.
Варианты выходных последовательностей импульсных звеньев
Пример импульсной системы
1 - импульсное звено - ключ с ШИМ; 2 - непрерывное звено - фильтр с нагрузкой; изменение +U можно рассматривать как возмущение f(t)
Система линейна, если линеен ШИ-модулятор. Если Rн меняется, то система дополнительно будет параметрической.
Математический аппарат описания импульсных систем
Решетчатые функции
Решетчатые функции 2 определены только в дискретные моменты времени [nT] (сокращенно [n]), и формируются из непрерывных функций 1: f [nT] = f (t) при t=nT. Рассматривают так же смещенные решетчатые функции (последовательность 3): f [n, ] = f (t) при t=(n+)T, где - относительное смещение, [0..1).
Непрерывные функции, проходящие через дискреты заданной решетчатой функции, называют огибающими. Их бесконечно много.
Основная огибающая может быть получена, как результат решения ДУ наименьшего порядка и должна содержать гармоники наименьшей частоты.