- •План лекционных занятий дисциплины "Теория автоматического управления"
- •Литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Предмет, проблематика, задачи и цель дисциплины "Теория автоматического управления Основные понятия и определения
- •Классификация систем автоматического регулирования
- •Составление исходных дифференциальных уравнений сау Общая форма записи систем ду
- •Форма Коши
- •Пространство состояний
- •Ду решенное относительно регулируемой величины y(t) - уравнение движения
- •Ду решенное относительно ошибки X(t) - уравнение ошибки
- •Передаточные функции сау
- •Другие связывающие отношения
- •Линеаризация ду сар
- •Суть линеаризации
- •Особенности линеаризованного уравнения
- •Геометрическая трактовка линеаризации
- •Запись линеаризованных уравнений в стандартных для тау формах
- •Описание сар в частотном представлении Частотная передаточная функция
- •35 Частотные характеристики
- •Амплитудно-фазовая (частотная) характеристика или годограф Найквиста
- •Логарифмические чх - лачх & лфчх
- •Правила построения асимптотических лачх & лфчх
- •Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
- •Типовые динамические звенья
- •Правила преобразования структурных схем линейных систем
- •Последовательное соединение
- •Параллельное согласное соединение
- •Принцип управления по внешнему возмущению
- •А) разомкнутая сар с жестким управлением
- •Б) разомкнутая сар с управлением по возмущению
- •Принцип управления по отклонению
- •Замкнутая сар с управлением по отклонению
- •Работа системы в статике
- •Работа системы в динамике
- •Комбинированное управление
- •Комбинированная схема с управлением по отклонению и возмущению
- •Системы экстремального управления
- •Программы и законы регулирования Программа регулирования
- •Закон регулирования
- •Линейные непрерывные законы регулирования
- •Пропорциональное регулирование
- •Интегральное регулирование
- •Интегральное регулирование по второму интегралу от ошибки
- •Изодромное регулирование - pi
- •Регулирование с использованием производных
- •Устойчивость сау
- •Математический признак устойчивости.
- •Определение устойчивости по м. Я. Ляпунову
- •Понятие о характеристическом уравнении
- •Условие устойчивости. Типы границы устойчивости
- •Критерии устойчивости линейных сау.
- •Необходимое условие устойчивости сар, достаточное только для систем 1-ого и 2-ого порядков
- •Критерий устойчивости Гурвица
- •Критерий Рауса
- •Критерий устойчивости Михайлова
- •Свойства годографа Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Критерий устойчивости Найквиста
- •Свойства годографа Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •54 Определение устойчивости по логарифмическим частотным характеристикам
- •Построение областей устойчивости - d-разбиение
- •Оценка качества регулирования
- •47 Точность в типовых режимах
- •Сигналы задания для типовых режимов движения, их модели и изображения по Карсону-Хевисайду
- •Ошибки статической системы
- •Ошибки системы с астатизмом первого порядка
- •Ошибки системы с астатизмом второго порядка
- •О компенсации помех в астатических системах
- •Коэффициенты ошибок
- •44 Оценка запаса устойчивости и быстродействия по переходной характеристике
- •Корневые методы оценки качества
- •Понятие о среднегеометрическом корне 0. Мажоранта и миноранта переходной функции
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Частотные критерии качества
- •Оценка запаса устойчивости
- •Оценка быстродействия сар
- •Повышение точности сар
- •Повышение точности систем увеличением коэффициента усиления
- •Повышение точности систем увеличением порядка астатизма
- •Повышение точности систем применением регулирования по производным от ошибки
- •Повышение точности систем применением комбинированного управления
- •Снижение ошибки от сигнала задания введением сигнала ку на входе регулятора
- •Снижение ошибки от сигнала задания введением сигнала ку после регулятора
- •Снижение ошибки от возмущающего сигнала применением ку
- •Повышение точности систем применением неединичных обратных связей
- •Повышение точности систем применением масштабирующих устройств на входе или выходе
- •Синтез сар Синтез системы
- •Метод логарифмических амплитудных характеристик
- •Требования к нч части желаемой лачх Оценка точности сар по воспроизведению гармонического сигнала
- •Формирование запретной нч области для желаемой лачх
- •Построение нч части желаемой лачх
- •Требования к вч части желаемой лачх
- •Построение вч части желаемой лачх
- •Корневой метод синтеза
- •Метод корневых годографов
- •Системы с переменными параметрами Система линейная с переменными параметрами
- •Пример параметрической сар
- •Понятие о параметрической функции веса. Нахождение реакции параметрической сар на произвольное воздействие
- •Отыскание пф системы с var-параметрами
- •Устойчивость и качество регулирования систем с var-параметрами
- •Синтез параметрических сар
- •Системы с запаздыванием Система линейная с запаздыванием
- •Пример системы с транспортным запаздыванием
- •Пф звена чистого запаздывания
- •Аппроксимация звена чистого запаздывания
- •Размыкание систем с запаздыванием
- •Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Дифференцирование и интегрирование решетчатых функций
- •Разностные уравнения
- •Типовая структура импульсной системы. Понятие об импульсном фильтре
- •Обобщенная модель импульсного элемента
- •Приведенные весовая и передаточная функции разомкнутой импульсной системы
- •Дискретная пф
- •Правила преобразования структурных схем дискретных систем
- •Устойчивость и качество импульсных систем
- •Цифровые системы
- •Процессы протекающие в системах цу
- •Методика вывода дискретных пф
- •О синтезе систем с цвм методом логарифмических амплитудных характеристик
- •Цифровая коррекция
- •Цифровые регуляторы
- •Алгоритмы программ цифровых фильтров
- •Об эффекте квантования параметров
- •Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
- •Широтно-импульсный преобразователь.
- •Измерительные преобразователи и датчики. Датчик тока
- •Датчики скорости
- •Датчики положения механизма.
- •Электромеханические преобразователи
- •Электродвигатель постоянного тока
- •Асинхронный электродвигатель
- •Бесконтактный электродвигатель
- •Механические системы.
- •50 Понятие об управляемости системы и ее наблюдаемости.
- •Наблюдающие устройства.
- •Наблюдающие устройства Льюинбергера
- •Наблюдающее устройство идентификации
- •Редуцированное устройство идентификации.
- •Вопросы.
- •Словарь терминов
- •Практические работы
- •Вопросы:
Построение нч части желаемой лачх

![]()
В следящих системах с астатизмом 2-ого порядка, положение первой низкочастотной асимптоты всегда однозначно. Настройкой параметров регулятора (K, Ki1, Ki2) ее нужно подстроить по правой границе запретной области для НЧ.
В
системах с астатизмом первого порядка
надо определить положение 2-х асимптот.
Возможные варианты определены положением
постоянной времени объектаT1,
относительно контрольной частоты:

K > K треб, но: затруднено демпфирование и увеличиваются ВЧ шум.
Kv > Kv треб, но: увеличиваются НЧ шум.
Истинная ЛАЧХ должна быть поднята на 3 дБ, для компенсации ослабления в 1,4142 раза в зоне частоты сопряжения.
Требования к вч части желаемой лачх

Формировать ВЧ участок ЛАЧХ удобно при использовании показателя колебательности M, линии уровня которого, при скольжении вектора A, с фазой по окружностям M, можно нанести на ЛФЧХ.
В качестве типовых в НЧ части используются ЛАЧХ с наклоном не более -40 дБ/дек, которому соответствует нулевой запас по фазе, поэтому необходимо в области частоты среза формировать участок с наклоном -20 дБ/дек, т.е. сводить типовые ЛАЧХ к одному из 2-х видов:


|
1-2-1-2-3 0-1-2-1-2-4 ... |
1-2-3 0-1-2-3-4 ... |
Запретные зоны на ЛАЧХ определяют:
Для ЛАЧХ вида 2-1-2: а) начало корректирующего участка - Т2; и б) его длину - h = Т2/Тi, где i = [3, 4, ...), и 3 = 2h или ср = 2M/(M-1) или 3 = ср(M+1)/M.
Для ЛАЧХ вида 1-2 максимальное значение суммы постоянных времени равно Тi, где i = [1, 2, ...).
Если выше частоты среза имеется пик от колебательного звена, то его амплитуда не должна приблизиться к окружности с заданной колебательностью M, т.е. не должна достичь уровня на ЛАЧХ 20lg M/(M+1); а постоянная времени, при определении h, должна войти в сумму как 2T.
Построение вч части желаемой лачх
Исходные данные: 0 и T1 - определены при построении НЧ части желаемой ЛАЧХ.
Для
систем с астатизмом 2-ого порядка:
Задаются перерегулированием и определяют M:
, %
13,8
26,5
37,2
44,6
M
1,1
1,3
1,5
1,7
Зная M, определяют положение постоянной времени T2 (начало корректирующего участка):
,
где
;
и его длину:
.Проверяют, чтобы резонансные пики высокочастотных колебательных звеньев не достигали вновь уровня 20lg M/(M+1).
Для
систем с астатизмом 1-ого порядка
проверяют возможность сведения желаемой
ЛАЧХ к виду 1-2 или модификациям, путем
уменьшения постоянных времени до
значения:
,
где (M<1,3).
Если это невозможно, то формируют участок -20 дБ/дек аналогично методике для систем с астатизмом 2-ого порядка.
Корневой метод синтеза
Метод позволяет получить приемлемые динамические качества, при заданной структуре САР и заданном значении коэффициента усиления (последний член характеристического уравнения).
Пусть имеется ХУ:
sn+A1sn-1+...+An = 0. (1)
Сумма модулей вещественных частей всех корней равна коэффициенту A1. При заданной его величине быстродействие будет максимальным, если вещественные части корней равны. Но это не достижимо - система будет не устойчивой. Например, для САР состоящей из 3-х апериодических звеньев выполнение условия эквивалентно равенству постоянных времени...
Реально всегда можно выделить 2 или 3 корня, с наименьшей по модулю вещественной частью, которые определяют вид переходного процесса. Положим их 2 и они комплексные. Перепишем ХУ:
(2)
(sn-2+C1sn-3+...+Cn-3) (s2+B1s+B2) = 0.
Достаточно рассматривать только 2-ой сомножитель, поскольку им определен вид переходного процесса:
B2 определяется значением K и должен иметь возможно большее значение.
B1 определяется суммой 2-х низкочастотных постоянных времени и связан с затуханием , следовательно должен быть выбран исходя из 2-х противоречивых требований быстродействия и устойчивости.
Оптимальное соотношение между B1 и B2 может быть получено из условия затухания за один период , выбор которого определяет отношение вещественной части корней к мнимой:
= = 2 / ln(1/(1-)), где: = - B1/2; = (B2-B12/4)1/2.
Если принять, что вид переходного процесса определяют три корня, то следует воспользоваться уравнением 3-ей степени:
(3)
(...) (s3+B1s2+B2s1+B3) = 0,
которое нужно представить в виде:
(s+C11) (s2+B11s+B22) = 0.
Вещественные части корней будут равны 1 = 2,3 = - B1/3. Требования к B11 и B22 уже сформулированы, а связи с (3) определены равенствами:
B1=C11+B11, B2=B22+B11C11, B3=C11B22.
Выбор порядка уравнения для описания основной составляющей переходного процесса (2) или (3) зависит от структурной схемы САР.
