
- •План лекционных занятий дисциплины "Теория автоматического управления"
- •Литература
- •Список понятий, знание которых необходимо на момент начала изучения курса
- •Предмет, проблематика, задачи и цель дисциплины "Теория автоматического управления Основные понятия и определения
- •Классификация систем автоматического регулирования
- •Составление исходных дифференциальных уравнений сау Общая форма записи систем ду
- •Форма Коши
- •Пространство состояний
- •Ду решенное относительно регулируемой величины y(t) - уравнение движения
- •Ду решенное относительно ошибки X(t) - уравнение ошибки
- •Передаточные функции сау
- •Другие связывающие отношения
- •Линеаризация ду сар
- •Суть линеаризации
- •Особенности линеаризованного уравнения
- •Геометрическая трактовка линеаризации
- •Запись линеаризованных уравнений в стандартных для тау формах
- •Описание сар в частотном представлении Частотная передаточная функция
- •35 Частотные характеристики
- •Амплитудно-фазовая (частотная) характеристика или годограф Найквиста
- •Логарифмические чх - лачх & лфчх
- •Правила построения асимптотических лачх & лфчх
- •Типовые звенья и их характеристики Единичная функция. Дельта-функция. Типовые реакции систем
- •Типовые динамические звенья
- •Правила преобразования структурных схем линейных систем
- •Последовательное соединение
- •Параллельное согласное соединение
- •Принцип управления по внешнему возмущению
- •А) разомкнутая сар с жестким управлением
- •Б) разомкнутая сар с управлением по возмущению
- •Принцип управления по отклонению
- •Замкнутая сар с управлением по отклонению
- •Работа системы в статике
- •Работа системы в динамике
- •Комбинированное управление
- •Комбинированная схема с управлением по отклонению и возмущению
- •Системы экстремального управления
- •Программы и законы регулирования Программа регулирования
- •Закон регулирования
- •Линейные непрерывные законы регулирования
- •Пропорциональное регулирование
- •Интегральное регулирование
- •Интегральное регулирование по второму интегралу от ошибки
- •Изодромное регулирование - pi
- •Регулирование с использованием производных
- •Устойчивость сау
- •Математический признак устойчивости.
- •Определение устойчивости по м. Я. Ляпунову
- •Понятие о характеристическом уравнении
- •Условие устойчивости. Типы границы устойчивости
- •Критерии устойчивости линейных сау.
- •Необходимое условие устойчивости сар, достаточное только для систем 1-ого и 2-ого порядков
- •Критерий устойчивости Гурвица
- •Критерий Рауса
- •Критерий устойчивости Михайлова
- •Свойства годографа Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Критерий устойчивости Найквиста
- •Свойства годографа Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •54 Определение устойчивости по логарифмическим частотным характеристикам
- •Построение областей устойчивости - d-разбиение
- •Оценка качества регулирования
- •47 Точность в типовых режимах
- •Сигналы задания для типовых режимов движения, их модели и изображения по Карсону-Хевисайду
- •Ошибки статической системы
- •Ошибки системы с астатизмом первого порядка
- •Ошибки системы с астатизмом второго порядка
- •О компенсации помех в астатических системах
- •Коэффициенты ошибок
- •44 Оценка запаса устойчивости и быстродействия по переходной характеристике
- •Корневые методы оценки качества
- •Понятие о среднегеометрическом корне 0. Мажоранта и миноранта переходной функции
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Частотные критерии качества
- •Оценка запаса устойчивости
- •Оценка быстродействия сар
- •Повышение точности сар
- •Повышение точности систем увеличением коэффициента усиления
- •Повышение точности систем увеличением порядка астатизма
- •Повышение точности систем применением регулирования по производным от ошибки
- •Повышение точности систем применением комбинированного управления
- •Снижение ошибки от сигнала задания введением сигнала ку на входе регулятора
- •Снижение ошибки от сигнала задания введением сигнала ку после регулятора
- •Снижение ошибки от возмущающего сигнала применением ку
- •Повышение точности систем применением неединичных обратных связей
- •Повышение точности систем применением масштабирующих устройств на входе или выходе
- •Синтез сар Синтез системы
- •Метод логарифмических амплитудных характеристик
- •Требования к нч части желаемой лачх Оценка точности сар по воспроизведению гармонического сигнала
- •Формирование запретной нч области для желаемой лачх
- •Построение нч части желаемой лачх
- •Требования к вч части желаемой лачх
- •Построение вч части желаемой лачх
- •Корневой метод синтеза
- •Метод корневых годографов
- •Системы с переменными параметрами Система линейная с переменными параметрами
- •Пример параметрической сар
- •Понятие о параметрической функции веса. Нахождение реакции параметрической сар на произвольное воздействие
- •Отыскание пф системы с var-параметрами
- •Устойчивость и качество регулирования систем с var-параметрами
- •Синтез параметрических сар
- •Системы с запаздыванием Система линейная с запаздыванием
- •Пример системы с транспортным запаздыванием
- •Пф звена чистого запаздывания
- •Аппроксимация звена чистого запаздывания
- •Размыкание систем с запаздыванием
- •Частотные свойства систем с запаздыванием. Понятие о критическом запаздывании
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Дифференцирование и интегрирование решетчатых функций
- •Разностные уравнения
- •Типовая структура импульсной системы. Понятие об импульсном фильтре
- •Обобщенная модель импульсного элемента
- •Приведенные весовая и передаточная функции разомкнутой импульсной системы
- •Дискретная пф
- •Правила преобразования структурных схем дискретных систем
- •Устойчивость и качество импульсных систем
- •Цифровые системы
- •Процессы протекающие в системах цу
- •Методика вывода дискретных пф
- •О синтезе систем с цвм методом логарифмических амплитудных характеристик
- •Цифровая коррекция
- •Цифровые регуляторы
- •Алгоритмы программ цифровых фильтров
- •Об эффекте квантования параметров
- •Характеристики основных элементов сау. Усилители мощности Тиристорный преобразователь.
- •Широтно-импульсный преобразователь.
- •Измерительные преобразователи и датчики. Датчик тока
- •Датчики скорости
- •Датчики положения механизма.
- •Электромеханические преобразователи
- •Электродвигатель постоянного тока
- •Асинхронный электродвигатель
- •Бесконтактный электродвигатель
- •Механические системы.
- •50 Понятие об управляемости системы и ее наблюдаемости.
- •Наблюдающие устройства.
- •Наблюдающие устройства Льюинбергера
- •Наблюдающее устройство идентификации
- •Редуцированное устройство идентификации.
- •Вопросы.
- •Словарь терминов
- •Практические работы
- •Вопросы:
Системы экстремального управления
Принцип управления: (буровой станок)
|
Оптимальная скорость бурения достигается тогда, когда производная скорости по давлению на долото равна нулю. Отклонение давления от оптимального значения приводит к появлению положительной или отрицательной производной скорости по давлению, что позволяет регулятору вырабатывать сигнал компенсации, который определяет направление изменения давления на долото. |
Программы и законы регулирования Программа регулирования
План формирования задающего воздействия g(t) на систему.
Программа регулирования может быть:
временной: y = y(t);
параметрической: y = y(s1, s2, s3, ..., sn).
Например, временная программа приготовления пищи (лапшу варить 12 мин.), или параметрическая программа посадки самолета на палубу авианосца (в зависимости от: бокового ветра, изменений координат посадочной полосы, массы остатка топлива, ...).
Закон регулирования
Зависимость, по которой формируется регулирующее воздействие u(t) на объект из первичной информации: g(t) и/или x(t) и, возможно, f (t).
Законы регулирования бывают:
линейные:
;
нелинейные:
F1(u, du/dt, ...) = F2(x, dx/dt, ...; g, ...; f, ...) .
Классификация нелинейных законов регулирования:
Функциональные.
Логические.
Параметрические.
Оптимизирующие.
Примеры
статических функциональных нелинейностей
в законах:
.
Примеры динамических функциональных нелинейностей в законах:
Пример
логического нелинейного закона:
Если |x| < 0.2Gm, тогда u = k1 x ;
Если |x| > 0.2Gm, тогда u = k2 x ;
где: k1 < k2
Пример
параметрического нелинейного закона:
u = k (t [°C]; h [м]; G [кг]) x .
Пример
оптимизирующего нелинейного закона:
u = k (min(CO2); max(КПД)) x .
Линейные непрерывные законы регулирования
Под законом регулирования (управления) понимается алгоритм или функциональная зависимость, определяющая управляющее воздействие u(t) на объект:
u(t) = F(x, g, f) .
Линейные законы описываются линейной формой:
u(t) = k1x(t) + k2x(t)dt + k3x(t)dt2 + ... + k4x'(t) + k5x''(t) + ...
она же в операторной форме записи:
u(t) = x(t) [k1 + k2/p + k3/p2 + ... + k4 p + k5 p2 + ...] (1*).
Наличие в (1*) чувствительности регулятора к пропорциональной, к интегральным или к дифференциальным составляющим в первичной информации x(t), определяет тип регулятора:
P - пропорциональный.
I - интегральный.
PI - пропорционально интегральный (изодромный).
PD - пропорционально дифференциальный.
и более сложные варианты - PID, PIID, PIDD, ...
Пропорциональное регулирование
Пропорциональный закон регулирования имеет вид:
u(t) = Wрег(p) x(t) = k1x(t) ,
тогда в разомкнутом состоянии система будет характеризоваться ПФ:
W(p) = Wрег(p) Wo(p) = k1Wo(p) .
Рассмотрим уравнение ошибки:
В установившемся режиме p0 (все производные равны нулю); Wo(p)ko; W(p)k1ko=k; где k - контурный коэффициент усиления разомкнутой системы (при Wос(p)=1).
Резюме: P-регулирование позволяет уменьшить установившуюся (статическую) ошибку, но только в 1+k раз, поэтому регулирование будет статическим. Т.е. при любом k xуст0.
Интегральное регулирование
Интегральный закон регулирования имеет вид:
u(t) = Wрег(p) x(t) = k2/p x(t) ,
тогда в разомкнутом состоянии система будет характеризоваться ПФ:
W(p) = Wрег(p) Wo(p) = k2/p Wo(p) .
Рассмотрим уравнение ошибки:
В установившемся режиме p0, => W(p); => первая составляющая ошибки g0/0. Ошибка от возмущения зависит от вида функции Wf(0) и может быть отлична от нуля.
Резюме: I-регулирование позволяет исключить статическую ошибку в системе, т.е. система будет астатической по отношению к задающему воздействию g(t).