
- •103031, Москва, Столешников пер., 11
- •§ 1. Способ моделирования объектов изучения в содержательно-генетической логике 138
- •Предисловие
- •Г. П. Щедровицкий система педагогических исследований (Методологический анализ)
- •1. Современное общество и проблемы образования
- •II. «практика», «искусство» и «наука» в педагогике
- •Воспроизводство и трансляция культуры
- •Трансляция культуры и обучение
- •Обучение и «педагогическое производство»
- •Системы обучения и воспитания
- •Обучение и воспитание как сфера «массовой деятельности»
- •Практика, инженерия и методика
- •Методика и методология
- •«Практико-методические», конструктивно-технические» и собственно научные знания
- •Методология и естественные науки
- •Методология и история
- •Общая структура методологической работы
- •Методология и теория деятельности
- •Наука в педагогике и методология педагогики
- •III. Взгляды на реформу педагогической науки
- •О критериях оценки продуктивности различных линий построения педагогической теории
- •Критика исходных принципов кибернетико-математического подхода
- •IV. Система педагогических исследований с методологической точки зрения
- •V. Первый пояс педагогических исследований — научное определение целей образования
- •«Человек» как предмет исследований
- •Социологический слой исследований
- •Логический слой исследований
- •Психологический слой исследований
- •«Человек» с педагогической точки зрения
- •VI. Второй пояс педагогических исследований— анализ механизмов осуществления и формирования деятельности
- •Переход от логического к психологическому описанию деятельности. Механизмы формирования «способностей»
- •Усвоение. Рефлексия как механизм усвоения
- •VII. Третий пояс педагогических исследований — изучение развития человека в условиях обучения «Усвоение и развитие» как проблема
- •Понятие «развитие»
- •В каком смысле можно употреблять понятие «развитие» в педагогических исследованиях
- •Краткое резюме. Логика и психология в исследовании процессов развития, протекающих в условиях обучения
- •VIII. Методы исследования системы обучения и развития как научная и конструктивная проблема
- •IX. Заключение. Методические и практические выводы из анализа системы педагогических исследований
- •В. М. Розин логико-семиотический анализ знаковых средств геометрии (к построению учебного предмета)
- •1. Метод логико-эмпирического анализа развивающихся систем знаний § 1. Способ моделирования объектов изучения в содержательно-генетической логике
- •§ 2. Основные идеи псевдогенетического метода
- •§ 3. Схемы и понятия, используемые в работе
- •§ 4. Характеристика эмпирического материала
- •Позднее появляется способ измерения и вычисления пло-
- •II. Анализ элементов геометрического знания, возникших при решении задач производства
- •§ 1. Знаковые средства, обеспечивающие восстановление полей
- •§ 2. Формирование алгоритмов вычисления величины полей ,
- •§ 3. Трансляция сложившихся способов вычисления полей2
- •III. Формирование арифметико-геометрических задач и геометрических способов решения задач § 1. Прямые задачи
- •§ 2. Составные задачи
- •IV. Первые этапы формирования предмета геометрии § 1. Появление первых собственно геометрических задач
- •§ 2. Первая линия развития геометрических знаний
- •§ 3. Вторая линия развития геометрических знаний
- •V. Краткие выводы
- •Н. И. Непомнящая психолого-педагогический анализ и конструирование способов решения учебных задач
- •1. Обоснование проблемы и общая характеристика метода исследования структуры арифметических действий § 1. Схема выделения проблемы исследования
- •§ 2. Анализ некоторых знаний о структуре арифметических действий и первые формулировки проблемы исследования
- •§ 3. Метод анализа содержания обучения
- •Что же здесь должно являться элементом содержания обучения?
- •II. Анализ способа решения задач, ограниченного арифметической операцией § 1. Общий план работы в целом и место в ней данного этапа исследования. Характеристика испытуемых
- •§ 2. Анализ решений арифметических задач детьми, овладевшими формулой сложения и вычитания
- •III. Анализ и конструирование отдельных элементов способа § 1. Задачи данного раздела исследования
- •§ 2. Введение арифметического сложения и вычитания наоснове присчитывания и отсчитывания по одному
- •§ 3. Действия по установлению отношения равенства — неравенства и уравнивание как возможные компоненты арифметического способа решения задач
- •§ 4. Действие с отношением «целое — части» как возможный компонент арифметического способа решения задач
- •IV. Исследование способа, состоящего из нескольких элементов § 1. Способ, состоящий из двух элементов — действия с отношением равенства и действия с отношением «целое — части»
- •§ 2. Анализ способа, включающего арифметическую формулу
- •H. Г. Алексеев формирование осознанного решения учебной задачи*
- •I. Представление об осознанности, процедуры проверки
- •II. Смешение процедур проверки с процедурами, приводящими к появлению осознанного решения
- •III. Анализ применявшихся в акте деятельности средств, как основной момент формирования способа решения задач
- •IV. Необходимость особых задач. Последовательность учебных задач и заданий
- •V. Характеристика выбранного типа задач. Норма. Представление о способе решения задач. Исходные знания
- •VI. Недостаточность старых средств, ситуация разрыва. Введение нового средства и применение его в новых предметных областях
- •VII. Анализ средств. Двойной анализ примененных знаковых изображений. Формирование заданных средств и изменение характера деятельности
- •VIII. Место процедур проверки, переход к новой последовательности
- •IX. Схемы деятельности усвоения
- •X. Построение осознанного решения и проблема творческой активности учащихся
- •107082, Москва, Переведеновский пер., 21
VIII. Место процедур проверки, переход к новой последовательности
Как уже указывалось, приведенный выше разбор в виде серии целенаправленных вопросов идет под руководством учителя. Насколько усвоены результаты этого разбора, можно проверить, используя те самы процедуры варьирования, о которых мы говорили выше. Как и следовало ожидать, их истинное место в конце уже построенной последовательности, когда мы должны выяснить, а сложилась ли то, чего мы хотели достичь. Применение же их как процедур, ведущих к складыванию осознанной деятельности, как это теперь ясно видно из предшествующего разбора, оставляет все необходимые для этого действия на ученика, лишенного помощи учителя. На наш взгляд, этим объясняются все трудности, возникающие у учащихся при решении алгебраических задач.
Чтобы осуществить проверку, можно предложить нашим учащимся для самостоятельного решения задачу № 799. «Кусок железа и кусок меди весят вместе 373 г, причем объем куска железа на 5 см 3 больше объема куска меди. Найти объем каждого куска, если удельный вес железа 7,8 г/см 3». Эта задача удобна тем, что здесь дается ранее не встречавшееся предметное содержание — удельный вес. Можно подобрать задачу на стоимостные отношения, которые раньше также не встречались в наших экспериментах.
При проверке преследуются две цели. Первая — выяснить,
Конец страницы 404
Начало страницы 405
сформировались ли знания, необходимые для решения и этой задачи, что выясняется сразу: мы либо имеем решение, либо нет. В наших опытах, когда эта задача давалась после проведения цикла обучения, мы не наблюдали случая, чтобы эта задача нерешалась (при условии, если учащиеся знали, что такое удельный вес). Вторая цель — выяснить, как учащиеся могут объяснить свое решение, т. е. насколько они владеют при объяснении такими понятиями, как две ситуации, параметры и т. д. Сказанное имеет большое значение для последующего.
Может оказаться, что введенных нами средств недостаточно для решения некоторых задач. Так, если мы со старыми средствами приступим к решению задачи № 1405: «Поч-ттовый поезд, скорость которого на 15 км в час больше скорости товарного поезда, употребляет на прохождение расстояния между городами А и В на 9 часов меньше товарного поезда, а скорый поезд, скорость которого на 10 км час больше скорости почтового поезда, тратит на путь между городами А и В на 3 часа меньше почтового. Определить расстояние между городами А и В и скорость каждого поезда»,— то обнаружится, что выработанных средств опять недостаточно. История повторяется, мы вынуждены строить новую последовательность средств.
Применявшиеся нами ранее в качестве средства решения изображения (прямоугольника) очень удобно использовать при объяснении решения более сложных задач. Дело в том, что все эти задачи представимы относительно этого средства (изображений) как составные. Разобранные нами задачи сокращенно можно представить так:
где прямоугольники изображают две ситуации, а перевернутая фигурная скобка — их сопоставление. Абстрактно строятся следующие усложнения:
В случае (2) мы имеем две пары сопоставляемых ситуаций и сопоставление этих пар.
Конец страницы 405
Начало страницы 406
Здесь одна ситуация дважды входит в сопоставляемую пару ситуаций.
В представимости решения сложных задач по этим схемам читатель легко убедится, разобрав по схеме (2) задачу № 1405, а по схеме (3) задачу № 1460. Эти задачи, как правило, вызывающие затруднения у учащихся, при помощи предлагаемых изображений легко решаются.
Чтобы осуществить их осознаное решение, необходимо построить последовательность заданий, аналогичную в основных чертах уже разобранной. Несомненно, это построение будет значительно облегчено, так как здесь основное внимание будет направлено не на анализ изображений, а на способы их комбинирования в соответствии с условиями задачи. Мы так подробно остановились на этом факте лишь в той связи, что объяснение решения сложной задачи подобного типа нередко занимает более половины урока. На наш взгляд, это вызвано только тем, что нет осознанного решения простых задач, лежащих в основе этих сложных.