
- •103031, Москва, Столешников пер., 11
- •§ 1. Способ моделирования объектов изучения в содержательно-генетической логике 138
- •Предисловие
- •Г. П. Щедровицкий система педагогических исследований (Методологический анализ)
- •1. Современное общество и проблемы образования
- •II. «практика», «искусство» и «наука» в педагогике
- •Воспроизводство и трансляция культуры
- •Трансляция культуры и обучение
- •Обучение и «педагогическое производство»
- •Системы обучения и воспитания
- •Обучение и воспитание как сфера «массовой деятельности»
- •Практика, инженерия и методика
- •Методика и методология
- •«Практико-методические», конструктивно-технические» и собственно научные знания
- •Методология и естественные науки
- •Методология и история
- •Общая структура методологической работы
- •Методология и теория деятельности
- •Наука в педагогике и методология педагогики
- •III. Взгляды на реформу педагогической науки
- •О критериях оценки продуктивности различных линий построения педагогической теории
- •Критика исходных принципов кибернетико-математического подхода
- •IV. Система педагогических исследований с методологической точки зрения
- •V. Первый пояс педагогических исследований — научное определение целей образования
- •«Человек» как предмет исследований
- •Социологический слой исследований
- •Логический слой исследований
- •Психологический слой исследований
- •«Человек» с педагогической точки зрения
- •VI. Второй пояс педагогических исследований— анализ механизмов осуществления и формирования деятельности
- •Переход от логического к психологическому описанию деятельности. Механизмы формирования «способностей»
- •Усвоение. Рефлексия как механизм усвоения
- •VII. Третий пояс педагогических исследований — изучение развития человека в условиях обучения «Усвоение и развитие» как проблема
- •Понятие «развитие»
- •В каком смысле можно употреблять понятие «развитие» в педагогических исследованиях
- •Краткое резюме. Логика и психология в исследовании процессов развития, протекающих в условиях обучения
- •VIII. Методы исследования системы обучения и развития как научная и конструктивная проблема
- •IX. Заключение. Методические и практические выводы из анализа системы педагогических исследований
- •В. М. Розин логико-семиотический анализ знаковых средств геометрии (к построению учебного предмета)
- •1. Метод логико-эмпирического анализа развивающихся систем знаний § 1. Способ моделирования объектов изучения в содержательно-генетической логике
- •§ 2. Основные идеи псевдогенетического метода
- •§ 3. Схемы и понятия, используемые в работе
- •§ 4. Характеристика эмпирического материала
- •Позднее появляется способ измерения и вычисления пло-
- •II. Анализ элементов геометрического знания, возникших при решении задач производства
- •§ 1. Знаковые средства, обеспечивающие восстановление полей
- •§ 2. Формирование алгоритмов вычисления величины полей ,
- •§ 3. Трансляция сложившихся способов вычисления полей2
- •III. Формирование арифметико-геометрических задач и геометрических способов решения задач § 1. Прямые задачи
- •§ 2. Составные задачи
- •IV. Первые этапы формирования предмета геометрии § 1. Появление первых собственно геометрических задач
- •§ 2. Первая линия развития геометрических знаний
- •§ 3. Вторая линия развития геометрических знаний
- •V. Краткие выводы
- •Н. И. Непомнящая психолого-педагогический анализ и конструирование способов решения учебных задач
- •1. Обоснование проблемы и общая характеристика метода исследования структуры арифметических действий § 1. Схема выделения проблемы исследования
- •§ 2. Анализ некоторых знаний о структуре арифметических действий и первые формулировки проблемы исследования
- •§ 3. Метод анализа содержания обучения
- •Что же здесь должно являться элементом содержания обучения?
- •II. Анализ способа решения задач, ограниченного арифметической операцией § 1. Общий план работы в целом и место в ней данного этапа исследования. Характеристика испытуемых
- •§ 2. Анализ решений арифметических задач детьми, овладевшими формулой сложения и вычитания
- •III. Анализ и конструирование отдельных элементов способа § 1. Задачи данного раздела исследования
- •§ 2. Введение арифметического сложения и вычитания наоснове присчитывания и отсчитывания по одному
- •§ 3. Действия по установлению отношения равенства — неравенства и уравнивание как возможные компоненты арифметического способа решения задач
- •§ 4. Действие с отношением «целое — части» как возможный компонент арифметического способа решения задач
- •IV. Исследование способа, состоящего из нескольких элементов § 1. Способ, состоящий из двух элементов — действия с отношением равенства и действия с отношением «целое — части»
- •§ 2. Анализ способа, включающего арифметическую формулу
- •H. Г. Алексеев формирование осознанного решения учебной задачи*
- •I. Представление об осознанности, процедуры проверки
- •II. Смешение процедур проверки с процедурами, приводящими к появлению осознанного решения
- •III. Анализ применявшихся в акте деятельности средств, как основной момент формирования способа решения задач
- •IV. Необходимость особых задач. Последовательность учебных задач и заданий
- •V. Характеристика выбранного типа задач. Норма. Представление о способе решения задач. Исходные знания
- •VI. Недостаточность старых средств, ситуация разрыва. Введение нового средства и применение его в новых предметных областях
- •VII. Анализ средств. Двойной анализ примененных знаковых изображений. Формирование заданных средств и изменение характера деятельности
- •VIII. Место процедур проверки, переход к новой последовательности
- •IX. Схемы деятельности усвоения
- •X. Построение осознанного решения и проблема творческой активности учащихся
- •107082, Москва, Переведеновский пер., 21
§ 4. Действие с отношением «целое — части» как возможный компонент арифметического способа решения задач
Методика обучения. 1. Отношение «целое — части» вводится на предметных моделях: например, дается полоска бумаги, обозначаемая как «целое», которая потом разрывается на две «части». Части соединяются — полученная из них полосочка называется «целое».
2. От целой полоски отрывается или отсоединяется часть. Это действие обозначается в выражении: «От целого отняли часть». Соединение частей обозначается так: «К части прибавили часть». Кроме того, формулируются предложения: «К части прибавить часть — получится целое», «От целого отнять часть — получится часть»1.
3. Вводятся знаковые обозначения целого и частей:
О — целое, D — часть, а также следующие формулы:
D + D («к части прибавить часть»)
О — D («от целого отнять часть»),
D + D = О («к части прибавить часть — получится целое»).
Занятие проводилось в следующей форме: испытуемый выполнял действие на предметах, экспериментатор составлял формулу, фиксирующую это действие, потом они менялись местами и т. д. Двое из испытуемых обучались в серии с переходом от присчета к арифметическому действию (Саша К., 5 лет 3 мес., Вова Б., 6 лет), и трое детей обучались в серии с отношением равенства (Алла А., 4 г. 9 мес., Таня Л., 5 лет 3 мес., Наташа 3., 5 лет 3 мес.).
Результаты. Дети не испытывали затруднений при усвоении отношения «целое — части» на предметных моделях. Они могли также потом ответить на вопросы: «К части прибавили часть, что получится?», «От целого отнять часть, что получится?» — и перейти к правильному словесному описанию выполненного на предметах действия, используя заданную форму словесного описания. Однако изображение
__________________
1 Такие как будто неправомерные с точки зрения обычного употребления терминов выражения («прибавить» вместо «присоединить», «отнять» вместо «отделить») использовались для детей данного возраста специально, чтобы сократить число шагов по замене словесных терминов припереходе к формуле, у более старших детей можно было использовать разные словесные обозначения при описании предметного действия («присоединить», «отделить») и знаковых операций («прибавить», «отнять» или «плюс», «минус»)
Конец страницы 366
Начало страницы 367
этого действия в знаковой формуле вызвало большие трудности у детей. Они ставили либо все значки подряд, либо, случайно выбирая отдельные значки, не могли правильно употреблять в соответсвующих ситуациях две разные формулы О – D = D и D +D = O.
Дальнейшие эксперименты и теоретический анализ показали, что эти трудности связаны прежде всего с особенностями усвоения детьми дошкольного возраста таких действий, в которых структуры предметных и знаковых операций не изоморфны.
Эта сторона обучения подробно анализируется нами в другой работе. Введение специальных педагогических условий, учитывающих эту характеристику данной структуры действия и особенности ее усвоения у детей, привело к тому, что все наши испытуемые стали правильно использовать все знаки формулы, кроме одного знака «=». Испытуемые, как правило, не включают этот знак в формулу
D + DO,
а, включив неправильно, прочитывают ее, обозначив знак равенства другим словом:
D + D = O
(«часть прибавить часть целое целое»), либо же совсем его не называют («часть прибавить часть целое»).
Все условия, направленные на преодоление трудностей, связанных с неизоморфизмом предметной и знаковой операций, не сняли указанных ошибок в использовании знака «=» в формуле.
Это заставило предположить, что данные трудности обусловлены не особенностями усвоения, а какими-то другими причинами.
Соотнесем теперь результаты введения формулы типа А + Б = В (В — Б = А) на основе действия по установлению равенства и уравнивания, с одной стороны, и действия с отношением «целое — части», с другой. В первом случае при составлении формулы дети включали в нее знак «=», но неправильно использовали (или совсем не использовали) знаки «+» и «—». Полученные данные позволили предположить, что дети не могли соотносить один объект с другим, который рассматривался бы как продукт, как результат определенного действия. При введении формулы на основе действия с отношением «целое — части» испытуемые правильно выбирали знаки «+» и «—».
При действии с отношением «целое — части» объекты
Конец страницы 367
Начало страницы 368
или объективная ситуация оказываются связанными по способу их введения с определенными операциями: ситуация «часть и часть» есть в то же время ситуация их соединения, ситуация «целое и часть» есть в то же время ситуация отделения части от целого.
Здесь поэтому не происходило такого отрыва объекта от операций, который имел место при действии с отношением равенства и при уравнивании. Это и создавало возможность правильно выбирать знак «-f-» или «—» и включать его в формулу.
Однако при введении формулы на основе действия с отношением «целое — части» нарушался другой фрагмент формулы. Испытуемые теперь не использовали знак «=». Трудности при использовании знака « = » и сравнение особенностей составления формулы на основе отношения равенства и отношения «целое = части» позволяют предположить, что в этом случае не выделяется операция сопоставления, что как раз имело место при действии с отношением равенства. Следовательно, и в этом случае мы не добились еще полноты того содержания и тех средств, которые необходимы для того, чтобы дети могли правильно составлять формулы типа А + Б = В, В — Б = А.