
- •103031, Москва, Столешников пер., 11
- •§ 1. Способ моделирования объектов изучения в содержательно-генетической логике 138
- •Предисловие
- •Г. П. Щедровицкий система педагогических исследований (Методологический анализ)
- •1. Современное общество и проблемы образования
- •II. «практика», «искусство» и «наука» в педагогике
- •Воспроизводство и трансляция культуры
- •Трансляция культуры и обучение
- •Обучение и «педагогическое производство»
- •Системы обучения и воспитания
- •Обучение и воспитание как сфера «массовой деятельности»
- •Практика, инженерия и методика
- •Методика и методология
- •«Практико-методические», конструктивно-технические» и собственно научные знания
- •Методология и естественные науки
- •Методология и история
- •Общая структура методологической работы
- •Методология и теория деятельности
- •Наука в педагогике и методология педагогики
- •III. Взгляды на реформу педагогической науки
- •О критериях оценки продуктивности различных линий построения педагогической теории
- •Критика исходных принципов кибернетико-математического подхода
- •IV. Система педагогических исследований с методологической точки зрения
- •V. Первый пояс педагогических исследований — научное определение целей образования
- •«Человек» как предмет исследований
- •Социологический слой исследований
- •Логический слой исследований
- •Психологический слой исследований
- •«Человек» с педагогической точки зрения
- •VI. Второй пояс педагогических исследований— анализ механизмов осуществления и формирования деятельности
- •Переход от логического к психологическому описанию деятельности. Механизмы формирования «способностей»
- •Усвоение. Рефлексия как механизм усвоения
- •VII. Третий пояс педагогических исследований — изучение развития человека в условиях обучения «Усвоение и развитие» как проблема
- •Понятие «развитие»
- •В каком смысле можно употреблять понятие «развитие» в педагогических исследованиях
- •Краткое резюме. Логика и психология в исследовании процессов развития, протекающих в условиях обучения
- •VIII. Методы исследования системы обучения и развития как научная и конструктивная проблема
- •IX. Заключение. Методические и практические выводы из анализа системы педагогических исследований
- •В. М. Розин логико-семиотический анализ знаковых средств геометрии (к построению учебного предмета)
- •1. Метод логико-эмпирического анализа развивающихся систем знаний § 1. Способ моделирования объектов изучения в содержательно-генетической логике
- •§ 2. Основные идеи псевдогенетического метода
- •§ 3. Схемы и понятия, используемые в работе
- •§ 4. Характеристика эмпирического материала
- •Позднее появляется способ измерения и вычисления пло-
- •II. Анализ элементов геометрического знания, возникших при решении задач производства
- •§ 1. Знаковые средства, обеспечивающие восстановление полей
- •§ 2. Формирование алгоритмов вычисления величины полей ,
- •§ 3. Трансляция сложившихся способов вычисления полей2
- •III. Формирование арифметико-геометрических задач и геометрических способов решения задач § 1. Прямые задачи
- •§ 2. Составные задачи
- •IV. Первые этапы формирования предмета геометрии § 1. Появление первых собственно геометрических задач
- •§ 2. Первая линия развития геометрических знаний
- •§ 3. Вторая линия развития геометрических знаний
- •V. Краткие выводы
- •Н. И. Непомнящая психолого-педагогический анализ и конструирование способов решения учебных задач
- •1. Обоснование проблемы и общая характеристика метода исследования структуры арифметических действий § 1. Схема выделения проблемы исследования
- •§ 2. Анализ некоторых знаний о структуре арифметических действий и первые формулировки проблемы исследования
- •§ 3. Метод анализа содержания обучения
- •Что же здесь должно являться элементом содержания обучения?
- •II. Анализ способа решения задач, ограниченного арифметической операцией § 1. Общий план работы в целом и место в ней данного этапа исследования. Характеристика испытуемых
- •§ 2. Анализ решений арифметических задач детьми, овладевшими формулой сложения и вычитания
- •III. Анализ и конструирование отдельных элементов способа § 1. Задачи данного раздела исследования
- •§ 2. Введение арифметического сложения и вычитания наоснове присчитывания и отсчитывания по одному
- •§ 3. Действия по установлению отношения равенства — неравенства и уравнивание как возможные компоненты арифметического способа решения задач
- •§ 4. Действие с отношением «целое — части» как возможный компонент арифметического способа решения задач
- •IV. Исследование способа, состоящего из нескольких элементов § 1. Способ, состоящий из двух элементов — действия с отношением равенства и действия с отношением «целое — части»
- •§ 2. Анализ способа, включающего арифметическую формулу
- •H. Г. Алексеев формирование осознанного решения учебной задачи*
- •I. Представление об осознанности, процедуры проверки
- •II. Смешение процедур проверки с процедурами, приводящими к появлению осознанного решения
- •III. Анализ применявшихся в акте деятельности средств, как основной момент формирования способа решения задач
- •IV. Необходимость особых задач. Последовательность учебных задач и заданий
- •V. Характеристика выбранного типа задач. Норма. Представление о способе решения задач. Исходные знания
- •VI. Недостаточность старых средств, ситуация разрыва. Введение нового средства и применение его в новых предметных областях
- •VII. Анализ средств. Двойной анализ примененных знаковых изображений. Формирование заданных средств и изменение характера деятельности
- •VIII. Место процедур проверки, переход к новой последовательности
- •IX. Схемы деятельности усвоения
- •X. Построение осознанного решения и проблема творческой активности учащихся
- •107082, Москва, Переведеновский пер., 21
II. Анализ способа решения задач, ограниченного арифметической операцией § 1. Общий план работы в целом и место в ней данного этапа исследования. Характеристика испытуемых
Мы задаем следующие требования к изучаемому способу:
1) требование к объему конкретных деятельностей 1: данный способ должен обеспечивать решение простых арифметических задач, прямых и косвенных;
2) требование к структуре способа: необходимым элементом данного способа должны быть арифметические операции сложения и вычитания. Искомые:
а) структура способа в целом (выяснение того, какие еще элементы, кроме арифметических операций, связаны между собой);
б) структура учебной задачи, в которую входит данный способ.
На схеме 21 зафиксированы задачи, в которые входят
___________
1Структура способа будет различной в зависимости or того, какой объем конкретных деятельностей он должен обслуживать Объем конкретных деятельностей обусловлен совокупностью разных причин Частично этот вопрос обсуждается выше
Конец страницы 337
Начало страницы 338
заданные и искомые компоненты изучаемого объекта (крестиком X отмечены заданные известные компоненты изучаемого объекта).
С другой стороны, арифметические операции сложения и вычитания мы рассматриваем как специфическое средство выполнения особой деятельности — решения арифметических задач. Следовательно, рассмотрение арифметических операций в структуре арифметической задачи, с нашей точки зрения, есть необходимое условие их анализа. Цель этого анализа состоит в описании сложения — вычитания как двухплоскостной структуры, представляющей связь данной знаковой формы (арифметическая формула) с определенным содержанием.
Итак, план нашего исследования таков: начав с минимального состава способа, мы будем последовательно анализировать отдельные входящие или вводимые в него компоненты — их функцию и содержание в структуре данного набора арифметических задач, постепенно реконструируя таким образом способ в целом.
Все исследование было проведено с 22 детьми в возрасте от 4 до 7 лет (детский сад, Москва).
Первый компонент, с которого мы начали, согласно заданному требованию — арифметическая формула сложения и вычитания. Нам нужно было выяснить, каковы возможности и ограниченность «способа», состоящего только из одного компонента — формулы сложения и вычтания.
Для данной серии экспериментов были отобраны дети
Конец страницы 338
Начало страницы 339
навыки первоначального счета у которых были различны. В основную группу испытуемых вошло пятеро детей (от 4 лет З мес. до 4 лет 8 мес.) Все они могли воспроизводить числовой ряд в пределах 7—10 названий. Четверо испытуемых правильно соотносили название элементов числового ряда с последовательным показом предметов, один мальчик не умел этого делать. Задание — дать столько-то предметов из совокупности — дети выполняли так: двое детей могли правильно отобрать не больше пяти предметов, один — не больше трех, остальные при любом заданном количестве брали несколько предметов наугад или пересчитывали все предметы данной совокупности. При задании — определить количество предметов, относящихся к двум совокупностям,— дети пересчитывают элементы каждой из них в отдельности.