Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л Р СУЭП 1ч новая_(полная).doc
Скачиваний:
192
Добавлен:
26.03.2016
Размер:
2.27 Mб
Скачать

2. Методы математического моделирования

Для исследования характеристик технических систем и физических процессов, протекающих при функционировании любой системы, математическими методами должна быть проведена формализация процессов, т.е. построена математическая модель.

Математическое моделированиеэто процесс установления соответствия реальному физическому объекту некоторого математического объекта (математического описания), называемогоматематической моделью, и исследование этой модели, позволяющее получить, с некоторым приближением, характеристики рассматриваемого реального объекта. Математическое моделирование может быть динамическим, имитационным и комбинированным.

При решении задач электропривода используются динамические модели объектов. Такие модели описываются системами дифференциальных уравнений и исследуются при помощи аналитических, численных или качественных методов.

Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно лишь для относительно простых или линейных систем.

Численные методы используются, если невозможно разрешить математическое описание системы в общем виде или система существенно не линейна. Численные методы наиболее эффективны при использовании ЭВМ.

В некоторых случаях для исследования системы достаточно качественных методов анализа математической модели. Такие методы применяются в теории автоматического регулирования и позволяют судить, например, об устойчивости системы при определённом управлении.

В общем виде некоторый динамический объект описывается системой дифференциальных уравнений n-го порядка вида:

, (2.1)

где x1,x2, …xn– переменные динамического объекта;

– скорость изменения (производные) переменных динамического объекта;

– значение переменных в начальный момент времени;

t – независимая переменная.

Математическое моделирование, основанное на решении обыкновенных дифференциальных уравнений, опирается на численные методы. Численные методы позволяют получить приближенные значения реального непрерывного процесса, которые отстоят друг от друга на некоторый интервал времени, называемый шагом интегрирования. Выбор шага интегрирования зависит от динамических свойств моделируемой системы. Для широкого спектра динамических систем численное решение тем точнее, чем меньше шаг интегрирования. Однако, следует иметь ввиду, что чрезмерное уменьшение шага интегрирования может приводить к существенному увеличению затрат машинного времени.

К наиболее часто применяемым методам численного интегрирования дифференциальных уравнений относятся метод Эйлера (метод конечных приращений) и метод Рунге – Кутта четвёртого порядка.

Метод Эйлераоснован на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора:

, (2.2)

где h– малая окрестность исследуемой точки (шаг интегрирования);

  погрешность разложения в ряд Тейлора.

Метод Эйлера учитывает только первую производную ряда Тейлора. Тогда уравнение (2.2) будет иметь вид:

, (2.3)

где правая часть дифференциального уравнения, вычисленная в точке.

Следовательно, для решения уравнения или системы дифференциальных уравнений первого порядка методом Эйлера должна быть составлена следующей система уравнений с начальными условиями:

, (2.4)

где ti,ti+1– значение независимой переменной (времени) на предыдущем и следующем шаге интегрирования;

xj,i,xj,i+1– значениеj– ой переменной динамического объекта на предыдущем и следующем шаге интегрирования;

fj– подынтегральная функция дляj– ой переменной;

h– шаг интегрирования;

i = 0 .. m– число шагов интегрирования;

j = 0 .. n– количество переменных динамического объекта.

К достоинствам метода Эйлера можно отнести следующие:

  • При достаточно малом шаге интегрирования можно получить высокую точность решения. Погрешность метода примерно равна квадрату шага интегрирования: h2;

  • Метод Эйлера имеет устойчивый алгоритм вычислений при решении широкого круга задач, связанных с исследованием электромеханических систем электропривода.

К недостаткам метода Эйлера можно отнести то, что уменьшение шага интегрирования необходимое для обеспечения требуемой точности существенно замедляет вычисления.

Метод Рунге – Кутта основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора. Вычисление коэффициентов ряда Тейлора (до четвёртого порядка) осуществляется с помощью специальных коэффициентов Рунге – Кутта. Такой подход позволяет получить более высокую точность решения.

Формулы для нахождения численного решения дифференциального уравнения или системы дифференциальных уравнений первого порядка методом Рунге – Кутта имеют следующий вид:

, (2.5)

где ti,ti+1– значение независимой переменной (времени) на предыдущем и следующем шаге интегрирования;

xj,i,xj,i+1– значениеj– ой переменной динамического объекта на предыдущем и следующем шаге интегрирования;

fj– подынтегральная функция дляj– ой переменной;

kl i, j– коэффициенты Рунге – Кутта (l = 1 .. 4);

h– шаг интегрирования;

i = 0 .. m– число шагов интегрирования;

j = 0 .. n– количество переменных динамического объекта.

К достоинствам метода Рунге – Кутта можно отнести следующие. Высокая точность численного решения. При фиксированном шаге интегрирования погрешность решения примерно равна пятой степени шага интегрирования: h5.

Однако данный метод не всегда обеспечивает устойчивые решения. Устойчивость решения зависит как от величины шага интегрирования, так и от особенностей динамики исследуемой системы.