
- •История и методология биологии
- •Содержание
- •Введение
- •Лекция № 1
- •1. Представления о природе в древности
- •2. Уровень познания живой природы в Древней Греции
- •2.1. Философы - материалисты
- •2.2. Ионийская школа
- •2.3. Афинская школа
- •2.4. Александрийская школа
- •3. Представления о живой природе на заре новой эры в Древнем Риме
- •4. Уровень изучения живой природы в Средневековье
- •4.1. Господство схоластики при объяснении явлений природы
- •4.2. Возрождение интереса к наблюдениям при изучении явлений природы
- •Лекция № 2
- •1. Создание экспериментального естествознания в эпоху Возрождения
- •2. Успехи в области ботаники, систематики и физиологии растений
- •3. Зоологические исследования
- •4. Методологические итоги изучения живой природы
- •Лекция № 3
- •1. Развитие систематики и попытка построения естественных систем
- •2. Достижения в области физиологии растений
- •3. Исследования в области зоологии
- •4. Исследования в области эмбриологии
- •5. Характеристика основных догм о живой природе в XVIII в. И их критика
- •Лекция № 4
- •1. Достижения в сравнительной морфологии и анатомии животных и растений
- •2. Успехи в систематике, экологии и палеонтологии животных и растений
- •3. Исследование онтогенеза и эмбрионального развития животных и растений
- •4. Успехи в области физиологии животных и растений
- •5. Клеточная теория
- •6. Учение ж.Б. Ламарка
- •Лекция № 5
- •1. Ч.Дарвин и теория естественного отбора
- •2. Эволюционное направление в палеонтологии и систематике
- •3. Развитие эмбриологии животных и растений
- •4. Исследования структурно-функциональной организации живых существ
- •5. Развитие представлений о целостности живой природы
- •6. Дискуссии об эволюции и их влияние на развитие биологии в XX в.
- •Лекция № 6
- •1. Открытие гормонов
- •2. Достижения в исследовании иммунитета
- •3. Открытие групп крови
- •4. Создание химиопрепаратов
- •5. Создание первых антибиотиков и пестицидов
- •6. Исследование продуктов промежуточного обмена
- •7. Использование в биохимии радиоактивных изотопов
- •8. Открытие витаминов
- •9. Исследования нервной деятельности и поведения
- •Лекция № 7
- •1. Открытие ферментов и коферментов
- •2. Изучение тонкой структуры белков с помощью физико-химических методов
- •3. Изучение строения биомолекул методом хроматографии
- •4. Установление первичной структуры белка
- •5. Краткая история генетики
- •Роль отечественных ученых в развитии генетики
- •Лысенковщина
- •Причины лысенковщины:
- •6. Установление роли днк
- •7. Открытие двойной спирали днк
- •8.Расшифровка генетического кода
- •Лекция № 8
- •1. Зарождение протистологии
- •2. Зарождение бактериологии
- •3. Проблема самозарождения микроорганизмов
- •4.Морфология и систематика микроорганизмов
- •5. Формирование микробиологии как самостоятельной науки
- •6. Вклад р.Коха в бактериологию
- •7. Начало научной деятельности л. Пастера
- •8. Опровержение теории самопроизвольного зарождения микроорганизмов
- •9. Подтверждение л. Пастером микробной теории инфекционных заболеваний
- •10. Создание л. Пастером учения об иммунитете
- •11. Фагоцитарная и гуморальная теории иммунитета
- •12. Изучение участия микробов в природных процессах
- •13. Создание с. Н. Виноградским почвенной микробиологии
- •14. Разработка методов микробиологических исследований
- •15. Особенности микробиологии в XX веке
- •Лекция № 9
- •1. Зарождение вирусологии
- •2. Возникновение и развитие учения о вирусах бактерий
- •3. Развитие представлений о лизогении
- •4. Расшифровка природы лизогении
- •5. Изучение вирусов животных и человека
- •6. Развитие фитовирусологии
- •7. Заключение
- •Список источников литературы:
- •610000, Г. Киров, ул. Московская, 36, тел.: (8332) 64-23-56, http://vyatsu.Ru
Лекция № 7
Тема лекции: История молекулярной биологии и генетики
План лекции:
1. Открытие ферментов и коферментов
2. Изучение тонкой структуры белков с помощью физико-химических методов
3. Изучение строения биомолекул методом хроматографии
4. Установление первичной структуры белка
5. Краткая история генетики
6. Установление роли ДНК
7. Открытие двойной спирали ДНК
8. Расшифровка генетического кода
1. Открытие ферментов и коферментов
Процесс обмена веществ, который стал особенно хорошо известен ученым в середине 50-х годов, можно считать своеобразным выражением ферментативной природы клетки. Любая метаболическая реакция катализируется благодаря специфическому ферменту; характер обмена веществ определяется природой и концентрацией присутствующих в клетке ферментов. Следовательно, чтобы понять обмен веществ, необходимо знать ферменты.
На протяжении ХIХ столетия ферменты считались таинственными веществами, выявляемыми лишь по их действию. Немецкому химику Леонору Михаэлису (1875—1949) удалось раскрыть тайну ферментов с помощью законов и методов химической кинетики (раздела физической химии, изучающего скорость реакций). В 1913 г. он установил зависимость скорости реакций, катализируемых ферментами, от определенных условий. Он предположил, что фермент образует промежуточное соединение с веществом, реакцию которого он катализирует. Подобное допущение свидетельствует о том, что ферменты есть не что иное, как молекулы, подчиняющиеся физико-химическим законам. Но что же это за молекулы? По всей вероятности, это белки, так как ферментный раствор легко теряет активность даже при слабом нагревании, а, как известно, такую термолабильность имеют лишь белковые молекулы.
Однако все это были лишь предположения. В 20-х годах немецкий химик Рихард Вильштеттер (1872—1942) выдвинул гипотезу, согласно которой ферменты вовсе не являются белками. Правда, как оказалось впоследствии, эта гипотеза была ошибочной, но научный авторитет ее автора долгое время не позволял в ней усомниться. Через несколько лет вопрос о белковой природе ферментов был поднят вновь, на сей раз американским биохимиком Джеймсом Самнером (1887—1955). В 1926 г. Самнер выделил из семян мечевидной канавалии фермент, катализирующий реакцию расщепления мочевины на аммиак и углекислый газ. В процессе получения фермента ученый обнаружил возникновение в определенный момент мельчайших кристаллов. Выделив и растворив эти кристаллы, он получил жидкость с повышенной активностью уреазы. Все попытки отделить эту активность от кристаллов не увенчались успехом. Полученные кристаллы оказались ферментами и, как показали опыты Самнера, одновременно и белками. Таким образом, уреаза была не только первым ферментом, полученным в кристаллическом виде, но и первым ферментом с доказанной белковой природой.
Сомнениям относительно того, распространяется ли эта закономерность на все ферменты, положили конец исследования американского биохимика Джона Нортропа. В 1930 г. ученому удалось кристаллизовать пепсин — расщепляющий белок фермент желудочного сока; двумя годами позже — трипсин и в 1935 — химотрипсин. Трипсин и химотрипсин — расщепляющие белок ферменты поджелудочной железы. Они также оказались белками. После этого ученые получили в кристаллическом виде еще десятки ферментов, и все они были белками.
Артур Харден, открывший в начале ХХ столетия промежуточный обмен веществ, обратил также внимание на еще одну сторону ферментативной деятельности. Он поместил в воду дрожжевой экстракт в небольшом мешке из диализирующей мембраны (через которую просачиваются только молекулы малых размеров). После того как через стенки мешка вышли мелкие молекулы экстракта, последний уже не мог расщеплять сахар. Объяснить это явление просачиванием через мембрану самого фермента нельзя, поскольку вода, в которой находился мешок, также не расщепляла сахара. Однако в соединении с экстрактом внутри мешка она приобретала эту способность. Следовательно, можно сделать вывод: помимо крупных молекул, фермент включает в себя и относительно мелкие, непрочно связанные и потому способные просачиваться через мембрану. Эти мелкие молекулы, являющиеся структурной частью фермента и очень важные для его функционирования, получили название коферментов.
В середине 20-х годов шведский химик Ганс Эйлер обнаружил, что и другие ферменты содержат коферменты, однако структуру последних удалось выяснить лишь десятилетием позже. Тогда же определили строение витаминов, после чего уже не вызывало сомнения, что в большинстве коферментов в качестве составной части молекулы имеются витаминоподобные структуры.
Итак, витамины, по-видимому, являются той частью коферментов, которые не вырабатываются самим организмом и поэтому должны быть включены в пищу. Без витаминов построение коферментов невозможно, а без коферментов некоторые ферменты оказываются недеятельными и, таким образом, обмен веществ нарушается. В результате наступает авитаминоз, иногда со смертельным исходом.
Поскольку ферменты и коферменты — это катализаторы, нужные организму в малых количествах, витамины тоже нужны в столь же небольших количествах. Этим, собственно, и объясняется тот факт, что ничтожнейшие составные части пищи могут оказаться крайне необходимыми для нормальной жизнедеятельности организма. Следовые количества таких элементов, как медь, кобальт, молибден, цинк, образуют существенную часть ферментной структуры. Были выделены ферменты, содержащие по одному или несколько атомов этих элементов.