
- •И.К. Абдулжабарова
- •Тема 1. Предмет и метод статистики
- •1.1. Основные категории статистики
- •1.2. Статистическая деятельность в Российской Федерации
- •1.3. Практическое задание
- •Тема 2. Статистическое наблюдение
- •2.1. Понятие статистического наблюдения
- •2.2. Основные организационные формы, виды и способы статистического наблюдения
- •2.3. Программно-методологические вопросы статистического наблюдения
- •2.4. Основные организационные вопросы и этапы статистического наблюдения
- •2.5. Качество результатов статистического наблюдения и его контроль
- •2.6. Практическое задание
- •Тема 3. Статистическая сводка и группировка
- •3.1. Задачи сводки и ее содержание
- •3.2. Виды статистических группировок
- •3.3. Принципы построения статистических группировок и классификаций
- •3.4. Сравнимость статистических группировок. Вторичная группировка
- •3.5. Практическое задание
- •Тема 4. Графическое представление статистической информации
- •4.1. Сущность и значение графического метода в статистике
- •4.2. Основные требования к статистическому графику и его элементы
- •4.3. Основные виды графиков и их классификация
- •4.4. Диаграммы сравнения
- •4.5. Диаграммы структуры
- •4.6. Диаграммы динамики
- •4.7. Статистические карты
- •4.8. Практическое задание
- •Тема 5. Абсолютные, относительные и средние статистические показатели
- •5.1. Абсолютные показатели
- •5.2. Относительные показатели
- •5.3. Средние показатели
- •5.4. Практическое задание
- •Тема 6. Структурные характеристики рядов распределения и показатели вариации
- •6.1. Структурные характеристики рядов распределения
- •6.2. Показатели вариации
- •6.3. Использование показателей вариации в анализе взаимосвязей
- •6.4. Практическое задание
- •Тема 7. Статистическое изучение взаимосвязи социально-экономических явлений
- •7.1. Причинность, регрессия, корреляция
- •7.2. Парная регрессия на основе метода наименьших квадратов и метода групировок
- •7.3. Множественная (многофакторная) регрессия
- •7.4. Собственно-корреляционные параметрические методы изучения связи
- •7.5. Принятие решений на основе уравнений регрессии
- •7.6. Методы изучения связи качественных признаков
- •7.7. Ранговые коэффициенты связи
- •7.8. Практическое задание
- •Тема 8. Статистическое изучение динамики социально-экономических явлений
- •8.1. Понятие о рядах динамики и их виды
- •8.2. Сопоставимость уровней и смыкание рядов динамики
- •8.3. Аналитические показатели ряда динамики
- •8.4. Средние показатели в рядах динамики и методы их исчисления
- •8.5. Методы анализа основной тенденции (тренда) в рядах динамики
- •8.6. Методы выявления сезонной компоненты
- •8.7. Элементы прогнозирования и интерполяции
- •8.8. Практическое задание
- •Тема 9. Индексы
- •9.1. Общие понятия об индексах
- •9.2. Средние формы сводных индексов
- •9.3. Расчет сводных индексов за последовательные периоды
- •9.4. Индексный анализ влияния структурных изменений
- •9.5. Практическое задание
- •Задания для самостоятельной работы студентов
- •Список рекомендуемой литературы
- •Приложение 1 Бланки переписных листов Всесоюзной переписи населения 1979 г., 1989 г. И Всероссийской переписи населения 2002 г
- •Приложение 2
- •200 Крупнейших по размеру собственного капитала банков России (по состоянию на 01.01.09, млн руб)
- •Приложение 3 Динамика реализации сельскохозяйственных продуктов на рынках города за 2003г
8.6. Методы выявления сезонной компоненты
При рассмотрении квартальных или месячных данных многих социально-экономических явлений часто обнаруживаются определенные, постоянно повторяющиеся колебания, которые существенно не изменяются за длительный период времени. Они являются результатом влияния природно-климатических условий, общих экономических факторов, а также ряда многочисленных разнообразных факторов, которые частично являются регулируемыми. В статистике периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название "сезонных колебаний" или "сезонных волн", а динамический ряд в этом случае называют тренд-сезонным, или просто сезонным рядом динамики.
Сезонные колебания характеризуются специальным показателями, которые называются индексами сезонности (Is). Совокупность этих показателей отражает сезонную волну. Индексами сезонности являются процентные отношения фактических внутригодовых уровней к постоянной или переменной средней.
Для выявления сезонных колебаний обычно берут данные за несколько лет, распределенные по месяцам. Данные за несколько лет (обычно не менее трех) берутся для того, чтобы выявить устойчивую сезонную волну, на которой не отражались бы случайные условия одного года.
Если ряд динамики не содержит ярко выраженной тенденции в развитии, то индексы сезонности вычисляются непосредственно по эмпирическим данным без их предварительного выравнивания.
Для
каждого месяца рассчитывается средняя
величина уровня, например, за три года
(),
затем из них рассчитывается среднемесячный
уровень для всего ряда (
)
и в заключение определяется процентное
отношение средних для каждого месяца
к общему среднемесячному уровню ряда,
то есть:
(90)
Пример.
За 2007-2009 гг. по месяцам имеются данные о продаже молока на рынках сельхозпродуктов города. Рассчитать индексы сезонности методом постоянной средней (табл. 49).
Таблица 49
Месяцы |
Продано молока, тонн |
Индекс
сезонности
| ||||
2007 yi |
2008 yi |
2009 yi |
Среднемесячный уровень за три года | |||
А |
1 |
2 |
3 |
4 |
5 | |
январь февраль март апрель май июнь июль август сентябрь октябрь ноябрь декабрь |
77 79 75 59 62 61 89 78 88 70 71 73 |
79 81 83 70 65 68 88 82 78 68 67 65 |
85 87 82 69 68 65 84 81 70 68 66 65 |
80,3 82,3 80,3 66,0 65,0 64,7 87,0 80,3 78,7 68,7 68,0 67,7 |
108,5 111,2 108,5 89,2 87,8 87,4 117,6 108,5 106,4 92,8 91,9 91,5 | |
Средний уровень ряда |
73,5 |
74,5 |
74,1 |
74,0 |
100,0 |
Рассчитанные индексы сезонности характеризуют сезонную волну продажи молока во внутригодовой динамике, где пики продаж приводятся на февраль и июль месяцы.
Если же ряд динамики содержит определенную тенденцию в развитии, то прежде чем вычислить сезонную волну, фактические данные должны быть обработаны так, чтобы была выявлена общая тенденция. Обычно для этого прибегают к аналитическому выравниванию ряда динамики.
При использовании способа аналитического выравнивания ход вычислений индексов сезонности следующий:
по соответствующему полиному вычисляются для каждого месяца (квартала) выравненные уровни на момент времени (t);
вычисляются отношения фактических месячных (квартальных) данных (yi) к соответствующим выравненным данным (
) в процентах
находятся средние арифметические из процентных отношений, рассчитанных по одноименным периодам в процентах:
Ii=(I1+I2+I3+…+In):n, (91)
где n - число одноименных периодов.
В общем виде формулу расчета индекса сезонности данным способом можно записать так:
(92)