Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сэм / 41-51.doc
Скачиваний:
43
Добавлен:
26.03.2016
Размер:
265.22 Кб
Скачать

48)Модель оценки надежности, описываемая системой дифференциальных уравнений

Метод дифференциальных уравнений. Метод применяется для оценки надежности восстанавливаемых объектов и основан на допущении о показательных распределениях времени между отказами (наработки) и времени восстановления. При этом параметр потока отказов w = λ =1/tcp. и интенсивность восстановления µ = 1/, где tcp. – среднее время безотказной работы,  – среднее время восстановления.

Для применения метода необходимо иметь математическую модель для множества возможных состояний системы S = {S1,S2,…, Sn}, в которых она может находиться при отказах и восстановлениях системы. Время от времени система S скачком переходит из одного состояния в другое под действием отказов и восстановлений ее отдельных элементов.

При анализе поведения системы во времени в процессе износа удобно пользоваться графом состояний. Граф состояний – это направленный граф, где кружками или прямоугольниками изображают возможные состояния системы. Он содержит столько вершин, сколько различных состояний возможно у объекта или системы. Ребра графа отражают возможные переходы из некоторого состояния во все остальные с параметрами интенсивностей отказов и восстановлений (около стрелок показаны интенсивности переходов).

Каждой комбинации отказовых и работоспособных состояний подсистем соответствует одно состояние системы. Число состояний системы n = 2k, где k – количество подсистем (элементов).

Связь между вероятностями нахождения системы во всех его возможных состояниях выражается системой дифференциальных уравнений Колмогорова (уравнений первого порядка).

Структура уравнений Колмогорова построена по следующим правилам: в левой части каждого уравнения записывается производная вероятности нахождения объекта в рассматриваемом состоянии (вершине графа), а правая часть содержит столько членов, сколько ребер графа состояний связано с этой вершиной. Если ребро направлено из данной вершины, соответствующий член имеет знак минус, если в данную вершину – знак плюс. Каждый член равен произведению параметра интенсивности отказа (восстановления), связанного с данным ребром, на вероятность нахождения в той вершине графа, из которой исходит ребро.

Система уравнений Колмогорова включает столько уравнений, сколько вершин в графе состояний объекта.

Система дифференциальных уравнений дополняется нормировочным условием:

,

где Pj(t) – вероятность нахождения системы в j-м состоянии;

n – число возможных состояний системы.

Решение системы уравнений при конкретных условиях дает значение искомых вероятностей Pj(t).

Все множество возможных состояний системы разбивается на две части: подмножество состояний n1, в которых система работоспособна, и подмножество состояний n2, в которых система неработоспособна.

Функция готовности системы:

Кг,

где Pj(t) – вероятность нахождения системы в j работоспособном состоянии;

n1 – число состояний в которых система работоспособна.

Когда необходимо вычислить коэффициент готовности системы или коэффициент простоя (перерывы в работе системы допустимы), рассматривают установившийся режим эксплуатации при t→∞. При этом все производные  и система дифференциальных уравнений переходят в систему алгебраических уравнений, которые легко решаются.

Пример графа состояний нерезервированной восстанавливаемой системы с n – элементами приведен на рис. 1.

Рис. 1. Граф состояний восстанавливаемой системы (штриховкой отмечены неработоспособные состояния)

Рассмотрим возможные состояния в которых может находиться система. Здесь возможны следующие состояния:

S0 – все элементы работоспособны;

S1 – первый элемент неработоспособен остальные работоспособны;

S2 – второй элемент неработоспособен остальные работоспособны;

.

.

.

Sn – n-й элемент неработоспособен остальные работоспособны.

Вероятность одновременного появления двух неработоспособных элементов пренебрежимо мала. Символами λ1, λ2,…, λnобозначены интенсивности отказов, µ1, µ2,…, µn интенсивности восстановления соответствующих элементов;

По графу состояний (рис. 1) составляют систему дифференциальных уравнений (уравнение для состояния S0 опускаем из-за громоздкости):

С нормировочным условием: .

Начальные условия:

При установившемся режиме эксплуатации (при t→∞) имеем:

Решив полученную систему алгебраических уравнений с учетом нормировочного условия, находим показатели надежности.

При решении системы уравнений можно использовать преобразование Лапласа для вероятностей состояний или численные методы.

Соседние файлы в папке сэм