
1.3. Особенности пайки меди
Технически чистая медь М1 имеет высокие теплопроводность и электропроводность и достаточно высокую коррозионную стойкость. Она устойчива к атмосферной коррозии вследствие образования на ее поверхности тонкой защитной пленки, состоящей из окисла Си2О. Медь — относительно прочный (в = 240 МПа) и пластичный металл ( = 45—50%). С уменьшением содержания в меди газовых примесей ее пластичность возрастает до 62%. При повышенных температурах прочность меди уменьшается, а пластичность возрастает. Ценным свойством меди является ее способность сохранять высокую пластичность до температуры жидкого гелия (—269°С) [1].
Для повышения прочности меди и придания ей особых свойств (жаропрочности, коррозионной стойкости и др.) ее легируют различными добавками. Сплавы на основе меди обладают высокими механическими свойствами и другими ценными качествами.
Поэтому во многих отраслях техники для изделий, работающих в условиях повышенных и криогенных температур, в качестве основного металла широко применяются медь и ее сплавы, имеющие необходимый комплекс свойств. Пайка этих материалов может производиться всеми известными способами.
К числу особенностей меди и ее сплавов, влияющих на выбор способа пайки, относятся химическая стойкость оксидов; содержание во многих сплавах легкоиспаряющихся элементов — цинка, кадмия, марганца; склонность кислородсодержащей меди и некоторых ее сплавов к водородной хрупкости; повышенная способность меди образовывать интерметаллиды с некоторыми компонентами припоев; повышенная способность меди и ее сплавов к хрупкому разрушению в контакте с жидкими припоями; повышенная горячеломкость некоторых медных сплавов [4].
По степени трудности получения паяных соединений медные сплавы можно разделить на две группы:
медь и ее сплавы, образующие при нагреве под пайку и в процессе пайки оксиды с невысокой свободной энергией образования и поэтому относительно легко удаляемые при флюсовой пайке;
сплавы, при нагреве на которых возникают оксиды с высокой свободной энергией их образования.
К первой группе медных сплавов относится сама медь и ее сплавы, содержащие в основном следующие элементы: цинк, олово, свинец, фосфор, сурьму, железо, никель, марганец.
Обычное окисление поверхностного слоя меди на воздухе идет в основном по уравнению [4]
2Сu + О2 + Н20 + СО = (СuОН)2СО3.
При содержании в воздухе S02 параллельно может протекать реакция [4]
8Сu + 5О2 + Н2О+ SО2 = 2(СuSО4·3Сu(ОН)2).
В присутствии Н2S образуется черная пленка из Сu2S и СuS. Заметное взаимодействие меди с кислородом наступает уже при 200°С и идет по схеме Cu→Cu2O→CuO. Оксид меди СuО начинает образовываться лишь после получения пленки оксида Сu2О достаточной толщины (>0,25 мкм), что обусловлено тем, что такой процесс последовательного окисления развивается в основном в результате диффузии (сквозь пленку оксида СuО) атомов меди к кислороду (к поверхности). Первоначальная стадия окисления меди малозаметна, так как оксид Сu2О мало отличается по цвету от меди. Оксид СuО довольно устойчив, и его распад на Сu2О и Сu начинается лишь при температуре около 800°С, а в чистом кислороде при температуре 1100°С [5].
На воздухе медь окисляется сравнительно быстро. Скорость роста оксидной пленки на меди зависит от температуры и времени нагрева. При температуре 495°С через 1 с толщина оксидной пленки достигает 1,8 мкм, через 50 с – 5 мкм, через 70 с – 17 мкм. Для сохранения очищенной поверхности меди от окисления на нее наносят лужением слой припоя Sn-Рb или Sn толщиной 3-5 мкм. Слой полуды из олова сохраняет паяемость меди весьма длительно; слой полуды из припоев типа ПОС из-за образования при вылеживании на его границе с медью хрупких прослоек интерметаллидов ухудшает паяемость луженой меди, так как в результате расхода олова из слоя полуды припоями типа ПОС на образование химических соединений луженая поверхность обогащается свинцом.
На поверхности сплавов системы Сu-Zn-Sn (а также сплавов меди, содержащих Рb, Аs, Fe, Ni, Мn) образуются оксиды на основе СuО и Сu2О или оксиды на основе других элементов первой группы периодической системы со сравнительно невысокой свободной энергией их образования, а потому относительно легко диссоциирующих при низкотемпературной пайке. Тонкие слои оксидов Сu2О и СuО растворимы в канифоли.
Наиболее широко применяется пайка паяльником, газовыми горелками, погружением в расплавленный припой и в печах. Пайка низкотемпературными припоями нашла большое применение благодаря простоте и общедоступности этого способа. Ограничения в ее применении вызваны лишь тем, что паяльником можно осуществлять пайку только тонкостенных деталей при температуре 350°С. Массивные детали вследствие большой теплопроводности, превышающей в 6 раз теплопроводность железа, паяют газовыми горелками. Для трубчатых медных теплообменников применяется пайка погружением в расплавы солей и припоев. При пайке погружением в расплавы солей используют, как правило, соляные печи-ванны. Соли обычно служат источником тепла и оказывают флюсующее действие, поэтому дополнительного флюсования при пайке не требуется. При пайке погружением в ванну с припоем предварительно офлюсованные детали нагревают в расплаве припоя, который при температуре пайки заполняет соединительные зазоры. Зеркало припоя защищают активированным углем или инертным газом. Недостатком пайки в соляных ваннах является невозможность в ряде случаев удаления остатков солей или флюса.
Широкое распространение в промышленности находит пайка в печах, поскольку при этом обеспечивается равномерный нагрев соединяемых изделий без их деформации даже при больших габаритах изделий [З].
При пайке изделий из меди оловянно-свинцовыми и другими легкоплавкими припоями используют обычно канифольно-спиртовые флюсы, водные растворы хлористого цинка или хлористого аммония [5, 6].
Пайка серебряными припоями успешно идет при применении флюсов на основе соединений бора и фтористых соединений калия. Эти флюсы хорошо очищают поверхность меди от окисной пленки и способствуют растеканию припоя. Недостатком флюсовой пайки меди является трудность получения при этом способе герметичных соединений. Кроме того, остатки флюса являются очагами коррозии. Поэтому пайку меди чаще всего осуществляют в восстановительных или нейтральных газовых средах. В азоте пайку меди можно производить при температуре 750-800 °С.
Недостатки этого метода — сложность оборудования по очистке азота, а также невозможность осуществлять пайку при температуре ниже 750 °С [4, 6]. Применяется пайка меди и в среде аргона припоем ЛС59-1 с дополнительным флюсованием мест пайки водным раствором буры.
Пайку в вакууме успешно применяют для соединений многих металлов, в том числе и меди. Этот вид пайки достаточно экономичен, совершенно безопасен и производится в вакуумных печах или контейнерах, загруженных в обычные печи. Паяные швы, полученные при использовании нагрева в вакууме, отличаются чистотой исполнения, прочностью металла шва и высокой коррозионной стойкостью. К недостаткам способа пайки в вакууме следует отнести сложность применяемого оборудования [2, З]. Соединение меди при низкотемпературной пайке производится стандартными оловянно-свинцовыми припоями ПОССу 30—0,5; ПОС 40; ПОССу 40—0,5, ПОС 61 и свинцово-серебряными припоями ПСр 1,5; ПСр 2,5; ПСр 3 с использованием флюсов на основе хлористого цинка или канифольно-спиртовых. Соединения, паянные оловянно-свинцовыми припоями, теплостойки до температур 100—120 °С. При снижении температуры до —196…—253 °С предел прочности этих соединений увеличивается в 1,5—2,5 раза, достигая 45—75 МПа, при этом пластичность соединений резко снижается.
Хрупкость оловянно-свинцовых и паянных ими соединений при низких температурах объясняется аллотропическим превращением олова и образованием в шве хрупких интерметаллидов, которые при низких температурах являются очагами развития трещин [5]. Для оловянно-свинцовых сплавов, содержащих менее 15% олова, падения ударной вязкости не происходит. Это обусловлено тем, что свинец, являясь основой
сплава, с понижением температуры увеличивает ударную вязкость, давая до всех случаях вязкий излом. Высокая пластичность свинца делает его нечувствительным к надрезу. Поэтому вполне закономерны стремления применять для пайки изделий криогенной техники припои на основе свинца с содержанием олова менее 15%. Однако практика их применения показала, что они нетехнологичны, плохо смачивают паяемый металл и не затекают в соединительные зазоры. Например, применение припоя на основе свинца, легированного серебром (припой ПСр 3), позволяет получать теплостойкие и хладостойкие соединения из меди. Введение в этот припой 5 % Sn (ПСр 2,5) улучшает его технологические свойства, однако при 20 °С соединения, паянные припоями ПСр 3 и ПСр 2,5, имеют низкую прочность; предел прочности при срезе 12— 18 МПа.
Легирование свинца оловом до 16 % и кадмием до 5 % делает припой ПСр 1,5 более технологичным, однако он становится малопластичным даже при температуре 20°С. Применение кадмиевых припоев требует специального навыка, так как технологичность их значительно ниже, чем у оловянно-свинцовых. Соединения меди кадмиевыми припоями ПСр 5КЦН, ПСр 8КЦН теплостойки до температуры 350 °С, но отличаются низкой прочностью (в = 29 МПа) из-за образования в шве хрупких интерметаллидов; нехладостойки.
Припои на основе цинка редко применяют для пайки меди ввиду интенсивного растворения ее в расплаве припоя. При этом предел прочности на срез не превышает 15 МПа. Цинковые припои, легированные медью и серебром, также плохо растекаются по меди. Легирование этих припоев оловом и кадмием (ПЦА 8М, ПЦКд ПСрСУ 25—5—5) хотя и несколько улучшает их растекаемость, но швы становятся хрупкими. ., Для пайки меди находят также применение припои на основе медно-фосфористой эвтектики с добавлением серебра. Швы, паянные этими припоями, достаточно прочны (в = 250— т-300 МПа), теплостойки до 800°С, но непластичны. В условиях низких температур прочность соединений меди, паянных этими припоями, увеличивается, но пластичность резко падает.
Широкое применение для пайки медных конструкций находят припои ПСр 45, ПСР 40, ПСр 25, ПСр 12. Пайку этими припоями осуществляют нагревом ацетилено-кислородным пламенем или в печах с использованием коррозионно-активных флюсов ПВ209, ПВ284Х. После пайки остатки флюса необходимо удалять промывкой в горячей воде. Пайку теплообменной аппаратуры осуществляют с применением припоя ПСр 72 или ПСр 71 в вакууме.
При пайке изделий из медных сплавов, конструкция которых позволяет производить пайку под давлением, в качестве припоя можно использовать серебряное покрытие (10—25 мкм) или тонкую серебряную фольгу. При нагреве выше 779°С медь взаимодействует с серебром с образованием в шве сплава типа припоя ПСр 72. Пайка этим методом (контактно-реактивным) осуществляется без применения флюса — в вакууме или в инертной среде. Припои па медной основе тугоплавки и вызывают растворение (эрозию) основного металла, поэтому для пайки меди их применяют реже, чем серебряные.
Диффузионная пайка меди может быть выполнена галлием, индием, оловом, свинцом, припоями ПОССу 40—2, ПОС 61 путем поджатия деталей в вакууме или аргоне при температурах 650—800 °С и длительных выдержках. Припой в место пайки можно наносить напылением в вакууме, гальваническим способом или в виде тонкой фольги.
Капиллярную пайку меди низкотемпературными припоями можно произодить при зазорах 0,05—0,5 мм и температурах 650—900°С в вакууме или аргоне. При этом соединения меди, паянные индием, галлием, оловом, припоями ПОС 61 и ПОС 40, хрупкие и малопрочные, предел прочности на срез не превышает 40—70 МПа.
При пайке меди свинцом соединения хотя и малопрочны, но пластичны. При применении припоя системы Рb—Аg—Sn—Ni (ПСр 7,5) можно обеcпечить предел прочности при растяжении 140 МПа с достаточно высокой пластичность