- •Электромагнитные каналы
- •Электрические каналы
- •Параметрические каналы
- •Вибрационные каналы
- •Акустические каналы
- •Виброакустические каналы
- •Акустоэлектрические каналы
- •Оптико-электронный (лазерный) канал
- •Параметрические каналы
- •Основные понятия, определения и единицы измерения в акустике
- •Основные акустические параметры речевых сигналов
- •Уровни речевых сигналов
- •Распространение акустических сигналов в помещениях и строительных конструкциях
- •Каналы утечки речевой информации
- •Пассивные средства защиты выделенных помещений
- •Аппаратура и способы активной защиты помещений от утечки речевой информации
- •Особенности постановки виброакустических помех
- •Рекомендации по выбору систем виброакустической защиты
- •Подавление диктофонов
- •Нейтрализация радиомикрофонов
- •5.1. Индикаторы электромагнитных излучений. Радиочастотомеры
- •Характеристики устройств съема, передающих информацию по радиоканалу
- •Средства обнаружения устройств съема информации с радиоканалом
- •5.2. Радиоприемные устройства Сканирующие приемники
- •Режимы работы сканирующих приемников
- •Рекомендации по выбору сканирующего приемника
- •Высокоскоростные поисковые приемники
- •Селективные микровольтметры, анализаторы спектра
- •5.3. Автоматизированные поисковые комплексы
- •Принципы функционирования комплексов
- •Специальное программное обеспечение
- •Применение спо для построения поисковых комплексов
- •Специализированные поисковые программно-аппаратные комплексы
- •Мобильные поисковые комплексы
- •5.4. Нелинейные локаторы
- •Принцип работы нелинейного локатора
- •Эксплуатационно-технические характеристики локаторов
- •Методика работы с локатором
- •5.5. Досмотровая техника
- •Металлодетекторы
- •Приборы рентгеновизуального контроля
- •Переносные рентгенотелевизионные установки
- •Тепловизионные приборы
- •Эндоскопы
- •Средства радиационного контроля
- •Технические каналы утечки информации, возникающей при работе вычислительной техники за счет пэмин
- •Электромагнитные поля - основной канал утечки информационных сигналов
- •Элементарный электрический излучатель (особенности электромагнитного поля в непосредственной близости от источника)
- •Решение уравнений Максвелла для элементарного магнитного излучателя
- •Электрические излучатели электромагнитного поля
- •Магнитные излучатели электромагнитного поля
- •Электрические каналы утечки информации
Тепловизионные приборы
При размещении любого объекта в укрывающей среде неизбежно проявляются нарушения ее структуры (прежде всего плотности), даже при самом тщательном маскировании. В результате возникает различие в степени теплового излучения маскирующего слоя, расположенного над объектом, и естественного фона. Уровень излучения зависит от материала, температуры, влажности, состояния поверхности маскирующего слоя и ряда других факторов.
Тепловизионные приборы применяют для обнаружения средств съема информации, установленных в ограждающих конструкциях помещений, а также для определения параметров и времени появления тепловых следов, т.е. создания термографических изображений.
Тепловизионный комплекс IRTIS-200 (рис. 2.25) в диапазоне температур от -20 до +200°С имеет чувствительность от 0,05 до 0,35°С. Сканирование кадра с разрешением 256 х 256 строк занимает не более 1,5 с. Габариты инфракрасной камеры (ИК) 200 х 140 х 100 мм, при массе около 2,5 кг. Потребление энергии до 1,5 Вт позволяет обеспечить непрерывное время работы от 6 В NiCd аккумуляторов не менее 8 ч.
Инфракрасная камера прибора представляет собой механический сканер с одноэлементным ИК-приемником. Малое количество преломляющих и отражающих поверхностей зеркально-линзовой оптической системы обеспечивает минимальные потери и простоту настройки оптического тракта, что позволяет достичь равномерной чувствительности по полю кадров и высокой повторяемости их геометрии.
Инфракрасный приемник тепловизионного прибора может комплектоваться системой термоэлектрического охлаждения или системой охлаждения жидким азотом. Базовая модель камеры, укомплектованная последней системой, имеет чувствительность не менее 0,05°С. Наличие компьютера позволяет производить обработку информации непосредственно в процессе сканирования термограмм.

Эндоскопы
Для визуального контроля труднодоступных зон, характеризуемых минимальными размерами входных отверстий, сложными профилями и плохой освещенностью, предназначены волоконно-оптические приборы - эндоскопы.
В состав прибора (рис. 2.26) входят: мощный источник света 1, световод освещения 2, световод изображения 3 с объективом 4, окуляр 5 с регулятором резкости 6, манипулятор 7 гибкого участка объединенной (рабочей) части световодов 8.

Рис. 2.26. Принципиальная схема эндоскопа
В качестве источника света используется галогенная лампа, снабженная отражателем с интерференционным покрытием. Лампа и торцевая часть световода освещения охлаждаются воздушным потоком, создаваемым вентилятором. По световоду освещения свет передается в труднодоступную зону. Изображение, увеличенное объективом, передается по световоду наблюдателю. Качество изображения устанавливается регулятором резкости.
Наиболее широкое распространение получили эндоскопы серии ЭТ-2 (рис. 2.27).

Рис. 2.27. Общий вид эндоскопа серии ЭТ-2
Средства радиационного контроля
Обнаружение подозрительных объектов с радиоактивными свойствами осуществляется радиометрическими приборами, реагирующими на гамма или жесткое бета-излучение. В состав радиометра входят:
- детектор ионизирующего излучения в виде газонаполненного счетчика Гейгера-Мюллера или пропорционального счетчика, включающего в себя сцинтиллятор, фотоэлектронный умножитель, ионизационную камеру, кристалл полупроводник;
- счетчик импульсов или усилитель выходного тока детектора;
- цифровой или стрелочный индикатор;
- устройство питания.
Заряженная частица (гамма-квант), попадая в зону действия детектора, вызывает ионизацию рабочего вещества. Образующиеся заряды собираются на электродах детектора, формируя импульс тока. Количество импульсов за некоторое фиксированное время подсчитывается, а результат отображается на индикаторе. Время измерения для сцинтилляционного детектора составляет 1...2 с, для радиометров со счетчиками Гейгера-Мюллера - от 20 до 50 с.
Величина, которую измеряют радиометры, называется мощностью экспозиционной дозы (МЭД) гамма-излучения. Для ее оценки чаще всего используют внесистемные единицы (Рентген): Р/ч, Р/мин, Р/с, мР/мин мР/с, мкР/ч, мкР/мин, мкР/с. Фоновая МЭД должна составлять от 5 до 30 мкР/ч. Если МЭД, создаваемая объектом, в несколько раз превышает фоновую, его можно считать подозрительным.
Основной дозиметрической величиной является эквивалентная доза, являющаяся мерой потери энергии излучения в единице массы биологической ткани. Единица измерения в системе СИ - зиверт (Зв), внесистемная - бэр (1 бэр = 1 х 10-2 Зв). Поглощенная тканевая доза, измеренная в бэрах, примерно равна экспозиционной дозе, измеренной в рентгенах.
При работе с источниками ионизирующего излучения, чтобы не допустить заметного вредного воздействия излучения на организм человека, необходимо руководствоваться Нормами радиационной безопасности (НРБ-99). В этих нормах установлены основные пределы доз облучения для следующих категорий облучаемых лиц: для персонала (группы А и Б) и для всего населения. Под персоналом понимаются лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б).
Для персонала группы А установлена эффективная доза 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год. Для персонала группы Б основные пределы доз равны 1/4 значений для персонала группы А. Для населения установлена эффективная доза 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год.
В целях выявления источников ионизирующего излучения используются различные виды дозиметров. Наиболее простые показывают факт наличия ионизирующих излучений, превышающих установленный порог. Более сложные позволяют измерять (оценивать) мощность дозы гамма-излучений, измерять плотность потока бета-излучений от загрязненных поверхностей, а также производить поиск источников ионизирующих излучений. Параметры типовых отечественных приборов радиационного контроля приведены в табл. 2.4.
Таблица 2.4 Приборы радиационного контроля
|
Модель |
Диапазон измерения мощности эффективной дозы, мкР/ч |
Виды измерения (измеряемое излучение) |
Индикация |
Время установления показаний, с |
Габариты, мм, масса, кг |
|
Дозиметр-радиометр ИРД-02 |
10…2000 |
α, β, γ |
ЖК-дисплей, звуковая |
40 |
240х78х65 0.5 |
|
Пороговый радиометр-сигнализатор НПС-3 |
5…50000 |
γ |
ЖК-дисплей, звуковая |
2 |
Блок индикатора: 40х100х195, 0.3 датчик 636х80х160, 0.25 |
|
Дозиметр-радиометр НПО-3 |
5…50000 |
γ |
ЖК-дисплей, звуковая |
1 |
40х100х195, 0.3 |
|
Дозиметр бытовой ДГБ-075Б |
10…50000 |
β, γ |
ЖК-дисплей, звуковая |
40 |
192х64х40, 0.35 |
# 11. Методы и методология защиты ТКУИ за счет ПЭМИН. Критерии защищенности.
