
- •3.Клеточная стенка строение. Образование и рост. Хим состав.: целлюлоза, пектиновые вещества.Легнин,суберин.
- •Получение
- •Физические свойства
- •Химические свойства
- •Химические свойства
- •6. Структура и функции белков.
- •8. Липиды. Жиры. Фосфатиды. Воски.
- •9. Элементарная мембрана. Строение, функции, химический состав.
- •10. Клеточное ядро.Строение.Состав. Функции.Ядрышко.Кариоплазма.Хроматин.Оболочка.
- •11. Пуриновые и пиримидиновые основания. Нуклеозиды и нуклеотиды. Нуклеиновые кислоты.
- •Строение[
- •Типы рнк
- •12. Хлоропласты. Строение. Химический состав, Функции.
- •13. Митохондрии. Строение.Химический состав и функции.
- •14. Макроэргические соединения в клетке.
- •15. Рибосомы. Состав и функции. Полирибосомы.
- •16. Аппарат Гольджи. Строение и функции.Химический состав. Эндоплазматическая сеть.
- •17. Вакуоли. Строение, химический состав и функции. Лизосомы и периксомы.
- •18.Ферменты. Строение. Номенклатура.
- •Свойства ферментов
- •Механизм действия ферментов
- •Распределение ферментов в организме
- •Номенклатура и классификация ферментов
- •19 Классификация ферментов.
- •20. Специфичность действия ферментов.Изоферменты. Изоферменты
- •Мультиферментные комплексы
- •Строение мультиферментного комплекса
- •2 Теории, объясняющие суть действия ферментов.
- •Специфичность
- •Стереоспецифичность аспартазы к транс-изомеру субстрата
- •21. Клетка как осмотическая система. Осмос. Уравнение осматического давления.
- •22. Методы определения осмотического давления.Плазмолитичесий и криоскопический.
- •23. Плазмолис. Тургор. Циторриз. Условия.
- •24. Проницаемость мертвой и живой протоплазмы.Определение жизнеспособности семян на основе проницаемости клетки.
15. Рибосомы. Состав и функции. Полирибосомы.
Рибосомы обильно наполняют клетки, ведущие интенсивный белковый синтез. В бактериальной клетке они рассеяны по всей протоплазме, составляя до 30%, а иногда и более, ее сухой массы; на одну бактериальную клетку приходится грубо 104 рибосом. В эукариотических клетках относительное содержание (концентрация) рибосом меньше, и их количество очень сильно варьирует в зависимости от белоксинтезирующей активности соответствующей ткани или отдельной клетки.Основная масса рибосом локализована в цитоплазме.Все рибосомы цитоплазматического матрикса (как мембраносвязанные, так и свободные) образуются в ядрышке эукариотической клетки и соответственно обнаруживаются также в этом компартменте клеточного ядра; считается, что в ядрышке они неактивны.Имеется два главных типа рибосом в живой природе. Всем прокариотическим организмам, включая грамположительные и грамотрицательные эубактерии, актиномицеты и синезеленые водоросли, а также архебактерии (метабактерии), свойственны 70S рибосомы. Они характеризуются седиментационным коэффициентом около 70S. Их молекулярная масса составляет около 2,5 • 106 дальтон, а линейные размеры (средний диаметр) в лиофильно-высушенном состоянии около 20—25 нм.По химическому составу они - чистые рибонуклеопротеиды, т. е. состоят только из РНК и белка.Цитоплазма клеток всех эукариотических организмов, включая животных, грибы, растения и простейших, содержит несколько более крупные 80S рибосомы. Их линейные размеры от 25 до 30 нм. Они также включают только два типа биополимеров — РНК и белок, но содержание белка в них существенно больше, чем в прокариотических рибосомах; соотношение масс РНК: белок около 1 :1.Синтез белка рибосомойБиосинтез белков осуществляется во всех клетках про- и эукариот. Информация о первичной структуре (порядке аминокислот) белковой молекулы закодирована последовательностью нуклеотидов в соответствующем участке молекулы ДНК — гене. Ген— это участок молекулы ДНК, определяющий порядок аминокислот в молекуле белка. Следовательно, от порядка нуклеотидов в гене зависит порядок аминокислот в полипептиде, т.е. его первичная структура, от которой в свою очередь зависят все другие структуры, свойства и функции белковой молекулы. Система записи генетической информации в ДНК (и-РНК) в виде определенной последовательности нуклеотидов называется генетическим кодом. Т.е. единица генетического кода (кодон) — это триплет нуклеотидов в ДНК или РНК, кодирующий одну аминокислоту.Для того, чтобы синтезировался белок, информация о последовательности нуклеотидов в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа – транскрипцию и трансляцию.Транскрипция (переписывание) информации происходит путем синтеза на одной из цепей молекулы ДНК одноцепочной молекулы РНК, последовательность нуклеотидов которой точно соответствует последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК.Второй этап в биосинтезе белка — трансляция — это перевод последовательности нуклеотидов в молекуле и-РНК в последовательность аминокислот в полипептиде.В цитоплазме на один из концов и-РНК (а именно на тот, с которого начинается синтез молекулы в ядре) вступает рибосома и начинается синтез полипептида. По мере продвижения по молекуле РНК рибосома транслирует триплет за триплетом, последовательно присоединяя аминокислоты к растущему концу полипептидной цепи. Точное соответствие аминокислоты коду триплета и - РНК обеспечивается т - РНК.Одна рибосома способна синтезировать полную полипептидную цепь. После завершения синтеза полипептидная цепочка отделяется от матрицы – молекулы и-РНК, сворачивается в спираль и приобретает свойственную ей (вторичную, третичную или четвертичную) структуру.Нередко по одной молекуле и-РНК движется несколько рибосом. Продвигаясь вдоль матричного полинуклеотида от 5'-конца к 3'-концу, рибосома через какое-то время освободит 5'-концевой участок матрицы. Тогда этот участок может начать считывать другая рибосома. Так же отойдя от 5'-концевой части, она предоставит возможность начать считывание третьей рибосоме. Идя вдоль матрицы друг за другом, ряд рибосом оказываются читающими одну и ту же информацию и, следовательно, синтезирующими идентичные полипептидные цепи, но находящимися на разных стадиях формирования полипептида. Такая структура, где матричный полинуклеотид ассоциирован со многими транслирующими рибосомами, получила название полирибосомы.