
- •Распределенные информационные системы и сети
- •Архитектура распределенных систем и основные понятия распределенной обработки данных
- •Концепция открытых систем
- •Преимущества идеологии открытых систем.
- •Открытые системы и объектно-ориентированный подход
- •Компьютерные (информационные) сети
- •Глобальные сети
- •Локальные сети
- •Многопроцессорные компьютеры
- •Взаимодействующие процессы
- •От централизованных систем - к вычислительным сетям
- •1.1. Эволюция вычислительных систем
- •Системы пакетной обработки
- •Многотерминальные системы - прообраз сети
- •Появление глобальных сетей
- •Первые локальные сети
- •Создание стандартных технологий локальных сетей
- •Современные тенденции
- •1.2. Вычислительные сети - частный случай распределенных систем
- •Мультипроцессорные компьютеры
- •Многомашинные системы
- •Вычислительные сети
- •Распределенные программы
- •Преимущества использования сетей
- •2.1. Проблемы физической передачи данных по линиям связи
- •2.2. Проблемы объединения нескольких компьютеров
- •Топология физических связей
- •Организация совместного использования линий связи
- •Адресация компьютеров
- •2.3. Стандартные решения сетевых проблем
- •2.4. Структуризация как средство построения больших сетей.
- •Физическая структуризация сети
- •Логическая структуризация сети
- •3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- •3.2. Модель osi
- •3.3. Уровни модели osi Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Представительный уровень
- •Прикладной уровень
- •Сетезависимые и сетенезависимые уровни
- •3.4. Стандартные стеки коммуникационных протоколов
- •Стек tcp/ip
- •Стек ipx/spx (Internetwork Packet Exchange/ Sequenced Packet Exchange)
- •Стек NetBios/smb (Network Basic Input/Output System / Server Message Block)
- •4.1. Локальные и глобальные сети
- •4.2 Требования, предъявляемые к современным вычислительным сетям
- •Производительность
- •Надежность и безопасность
- •Расширяемость и масштабируемость
- •Прозрачность
- •Поддержка разных видов трафика
- •Управляемость
- •Совместимость
- •5.1. Типы линий связи
- •5.2. Аппаратура линий связи
- •5.3. Характеристики линий связи
- •Амплитудно-частотная характеристика, полоса пропускания и затухание
- •Пропускная способность линии
- •Связь между пропускной способностью линии и ее полосой пропускания
- •Помехоустойчивость и достоверность
- •Коаксиальные кабели
- •Кабели на основе неэкранированной витой пары
- •Кабели на основе экранированной витой пары
- •Волоконно-оптические кабели
- •6.1. Аналоговая модуляция
- •Методы аналоговой модуляции
- •Спектр модулированного сигнала
- •6.2. Цифровое кодирование
- •Требования к методам цифрового кодирования
- •Потенциальный код без возвращения к нулю
- •Метод биполярного кодирования с альтернативной инверсией
- •Потенциальный код с инверсией при единице
- •Биполярный импульсный код
- •Манчестерский код
- •Потенциальный код 2b1q
- •6.3. Логическое кодирование
- •Избыточные коды
- •Скрэмблирование
- •6.4. Дискретная модуляция аналоговых сигналов
- •6.5. Асинхронная и синхронная передачи
- •7.1. Методы передачи данных канального уровня
- •Асинхронные протоколы
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Символьно-ориентированные протоколы
- •Бит-ориентированные протоколы
- •Протоколы с гибким форматом кадра
- •Передача с установлением соединения и без установления соединения
- •Обнаружение и коррекция ошибок
- •Методы обнаружения ошибок
- •Методы восстановления искаженных и потерянных кадров
- •Компрессия данных
- •7.2. Методы коммутации
- •Коммутация каналов
- •Коммутация каналов на основе частотного мультиплексирования
- •Коммутация каналов на основе разделения времени
- •Общие свойства сетей с коммутацией каналов
- •Обеспечение дуплексного режима работы на основе технологий fdm, tdm и wdm
- •Коммутация пакетов Принципы коммутации пакетов
- •Виртуальные каналы в сетях с коммутацией пакетов
- •Пропускная способность сетей с коммутацией пакетов
- •Коммутация сообщений
- •Общая характеристика протоколов локальных сетей
- •3.1.2. Структура стандартов ieee 802.X
- •Максимальная производительность сети Ethernet
- •Основные характеристики технологии
- •Маркерный метод доступа к разделяемой среде
- •Форматы кадров Token Ring
- •Физический уровень технологии Token Ring
- •10.2. Технология fddi
- •Основные характеристики технологии
- •Особенности метода доступа fddi
- •Отказоустойчивость технологии fddi
- •Физический уровень технологии fddi
- •Сравнение fddi с технологиями Ethernet и Token Ring
- •Структурированная кабельная система
- •Иерархия в кабельной системе
- •Выбор типа кабеля для горизонтальных подсистем
- •Выбор типа кабеля для вертикальных подсистем
- •Выбор типа кабеля для подсистемы кампуса
- •Глобальные сети
- •Обобщенная структура и функции глобальной сети Транспортные функции глобальной сети
- •Высокоуровневые услуги глобальных сетей
- •Структура глобальной сети
- •Интерфейсы dte-dce
- •Типы глобальных сетей
- •Выделенные каналы
- •Протоколы семейства hdlc
- •Протокол ppp
- •Глобальные сети с коммутацией каналов
- •Глобальные сети с коммутацией пакетов
- •Магистральные сети и сети доступа
- •Сети х.25 Протоколы сетей х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех. Назначение и структура сетей х.25
- •Адресация в сетях х.25
- •Стек протоколов сети х.25
- •Сети Frame Relay Назначение и общая характеристика
- •Стек протоколов frame relay
- •Поддержка качества обслуживания
- •Использование сетей frame relay
- •Технология атм
- •Основные принципы технологии атм
- •Стек протоколов атм
- •Уровень адаптации aal
- •Протокол атм
- •Категории услуг протокола атм и управление трафиком
- •Сосуществование атм с традиционными технологиями локальных сетей
- •Использование технологии атм
- •100Vg-Anylan
- •6.5. Удаленный доступ
- •6.5.1. Основные схемы глобальных связей при удаленном доступе
- •Типы взаимодействующих систем
- •Типы поддерживаемых служб
- •Типы используемых глобальных служб
- •6.5.2. Доступ компьютер - сеть
- •Удаленный узел
- •Удаленное управление и терминальный доступ
- •6.5.3. Удаленный доступ через промежуточную сеть Общая схема двухступенчатого доступа
- •Технологии ускоренного доступа к Internet через абонентские окончания телефонных и кабельных сетей
- •11.2. Концентраторы и сетевые адаптеры
- •Сетевые адаптеры (в лабораторной работе) Функции и характеристики сетевых адаптеров
- •Классификация сетевых адаптеров
- •Концентраторы Основные и дополнительные функции концентраторов
- •Отключение портов
- •Поддержка резервных связей
- •Защита от несанкционированного доступа
- •Многосегментные концентраторы
- •Управление концентратором по протоколу snmp
- •Конструктивное исполнение концентраторов
- •13.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •Ограничения мостов и коммутаторов
- •Понятие internetworking
- •Функции маршрутизатора
- •Реализация межсетевого взаимодействия средствами tcp/ip
- •Многоуровневая структура стека tcp/ip
- •Уровень межсетевого взаимодействия
- •Основной уровень
- •Прикладной уровень
- •Уровень сетевых интерфейсов
- •Соответствие уровней стека tcp/ip семиуровневой модели iso/osi
- •13.2. Адресация в ip-сетях Типы адресов стека tcp/ip
- •Классы ip-адресов
- •Особые ip-адреса
- •Использование масок в ip-адресации
- •Порядок распределения ip-адресов
- •Автоматизация процесса назначения ip-адресов
- •Отображение ip-адресов на локальные адреса
- •Отображение доменных имен на ip-адреса Организация доменов и доменных имен
- •Система доменных имен dns
- •14.1. Основные функции протокола ip
- •14.2. Структура ip-пакета
- •14.3. Таблицы маршрутизации в ip-сетях
- •Примеры таблиц различных типов маршрутизаторов
- •Назначение полей таблицы маршрутизации
- •Источники и типы записей в таблице маршрутизации
- •14.4. Маршрутизация без использования масок
- •14.5. Маршрутизация с использованием масок Использование масок для структуризации сети
- •Использование масок переменной длины
- •Технология бесклассовой междоменной маршрутизации cidr
- •14.6. Фрагментация ip-пакетов
- •14.7. Протокол надежной доставки tcp-сообщений
- •Сегменты и потоки
- •Соединения
- •Реализация скользящего окна в протоколе tcp
- •Раздел 2
- •6.2.3. Протоколы канального уровня для выделенных линий
- •Протокол slip
- •Протоколы семейства hdlc
- •Протокол ppp
- •6.2.4. Использование выделенных линий для построения корпоративной сети
- •6.3. Глобальные связи на основе сетей с коммутацией каналов
- •6.3.1. Аналоговые телефонные сети Организация аналоговых телефонных сетей
- •Модемы для работы на коммутируемых аналоговых линиях
- •6.3.2. Служба коммутируемых цифровых каналов Switched 56
- •6.3.3. Isdn - сети с интегральными услугами Цели и история создания технологии isdn
- •Пользовательские интерфейсы isdn
- •Подключение пользовательского оборудования к сети isdn
- •Адресация в сетях isdn
- •Стек протоколов и структура сети isdn
- •Использование служб isdn в корпоративных сетях
- •6.4. Компьютерные глобальные сети с коммутацией пакетов
- •6.4.1. Принцип коммутации пакетов с использованием техники виртуальных каналов
Общие свойства сетей с коммутацией каналов
Сети с коммутацией каналов обладают несколькими важными общими свойствами независимо от того, какой тип мультиплексирования в них используется.
Сети с динамической коммутацией требуют предварительной процедуры установления соединения между абонентами. Для этого в сеть передается адрес вызываемого абонента, который проходит через коммутаторы и настраивает их на последующую передачу данных. Запрос на установление соединения маршрутизируется от одного коммутатора к другому и в конце концов достигает вызываемого абонента. Сеть может отказать в установлении соединения, если емкость требуемого выходного канала уже исчерпана. Для FDM-коммутатора емкость выходного канала равна количеству частотных полос этого канала, а для TDM-коммутатора - количеству тайм-слотов, на которые делится цикл работы канала. Сеть отказывает в соединении также в том случае, если запрашиваемый абонент уже установил соединение с кем-нибудь другим. В первом случае говорят, что занят коммутатор, а во втором - абонент. Возможность отказа в соединении является недостатком метода коммутации каналов.
Если соединение может быть установлено, то ему выделяется фиксированная полоса частот в FDM-сетях или же фиксированная пропускная способность в TDM-сетях. Эти величины остаются неизменными в течение всего периода соединения. Гарантированная пропускная способность сети после установления соединения является важным свойством, необходимым для таких приложений, как передача голоса, изображения или управления объектами в реальном масштабе времени. Однако динамически изменять пропускную способность канала по требованию абонента сети с коммутацией каналов не могут, что делает их неэффективными в условиях пульсирующего трафика.
Недостатком сетей с коммутацией каналов является невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей.
Сети с коммутацией каналов хорошо приспособлены для коммутации потоков данных постоянной скорости, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами. Для таких потоков сети с коммутацией каналов добавляют минимум служебной информации для маршрутизации данных через сеть, используя временную позицию каждого бита потока в качестве его адреса назначения в коммутаторах сети.
Обеспечение дуплексного режима работы на основе технологий fdm, tdm и wdm
В зависимости от направления возможной передачи данных способы передачи данных по линии связи делятся на следующие типы:
симплексный - передача осуществляется по линии связи только в одном направлении;
полудуплексный - передача ведется в обоих направлениях, но попеременно во времени. Примером такой передачи служит технология Ethernet;
дуплексный - передача ведется одновременно в двух направлениях.
Дуплексный режим - наиболее универсальный и производительный способ работы канала. Самым простым вариантом организации дуплексного режима является использование двух независимых физических каналов (двух пар проводников или двух световодов) в кабеле, каждый из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея лежит в основе реализации дуплексного режима работы во многих сетевых технологиях, например Fast Ethernet или ATM.
Иногда такое простое решение оказывается недоступным или неэффективным. Чаще всего это происходит в тех случаях, когда для дуплексного обмена данными имеется всего один физический канал, а организация второго связана с большими затратами. Например, при обмене данными с помощью модемов через телефонную сеть у пользователя имеется только один физический канал связи с АТС - двухпроводная линия, и приобретать второй вряд ли целесообразно. В таких случаях дуплексный режим работы организуется на основе разделения канала на два логических подканала с помощью техники FDM или TDM.
Модемы для организации дуплексного режима работы на двухпроводной линии применяют технику FDM. Модемы, использующие частотную модуляцию, работают на четырех частотах: две частоты - для кодирования единиц и нулей в одном направлении, а остальные две частоты - для передачи данных в обратном направлении.
При цифровом кодировании дуплексный режим на двухпроводной линии организуется с помощью техники TDM. Часть тайм-слотов используется для передачи данных в одном направлении, а часть - для передачи в другом направлении. Обычно тайм-слоты противоположных направлений чередуются, из-за чего такой способ иногда называют "пинг-понговой" передачей. TDM-разделение линии характерно, например, для цифровых сетей с интеграцией услуг (ISDN) на абонентских двухпроводных окончаниях.
В волоконно-оптических кабелях при использовании одного оптического волокна для организации дуплексного режима работы применяется передача данных в одном направлении с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Такая техника относится к методу FDM, однако для оптических кабелей она получила название разделения по длине волны (Wave Division Multiplexing, WDM). WDM применяется и для повышения скорости передачи данных в одном направлении, обычно используя от 2 до 16 каналов.