
- •Греческий алфавит
- •Содержание
- •Лекция 1
- •I. Общие сведения
- •I. Общие сведения
- •1. Предмет курса «Процессы и аппараты»
- •2. Возникновение и развитие науки о процессах и аппаратах
- •3. Классификация основных процессов
- •4. Общие принципы анализа и расчета процессов и аппаратов
- •5. Различные системы единиц измерения физических величин
- •Лекция 2 Гидромеханические процессы.
- •II. Основы гидравлики. Общие вопросы прикладной гидравлики в химической аппаратуре
- •II. Основы гидравлики. Общие вопросы прикладной гидравлики в химической аппаратуре
- •1. Основные определения
- •2. Некоторые физические свойства жидкостей
- •Гидромеханические процессы. А. Гидростатика
- •3. Дифференциальные уравнения равновесия Эйлера
- •4. Основное уравнение гидростатики
- •5. Некоторые практические приложения основного уравнения гидростатики
- •Лекция 3 гидромеханические процессы.
- •Б. Гидродинамика
- •1. Основные характеристики движения жидкостей
- •2. Уравнение неразрывности (сплошности) потока
- •3. Дифференциальные уравнения движения Эйлера
- •4. Дифференциальные уравнения движения Навье-Стокса
- •5. Уравнение Бернулли
- •6. Некоторые практические приложения уравнения Бернулли
- •7. Движение тел в жидкостях
- •8. Движение жидкостей через неподвижные зернистые и пористые слои
- •9. Гидродинамика кипящих (псевдоожиженных) зернистых слоев
- •10. Элементы гидродинамики двухфазных потоков
- •11. Структура потоков и распределение времени пребывания жидкости в аппаратах
- •Лекция 4
- •III. Перемещение жидкостей
- •III. Перемещение жидкостей
- •1. Объемные насосы
- •2. Конструкция объемных насосов
- •3. Центробежные насосы
- •4. Конструкция центробежных насосов
- •1 Корпус, 2 – крышка, 3 – рабочее колесо, 4 – втулка корпуса,
- •5. Насосы других типов. Сифоны
- •Лекция 5
- •2. Поршневые компрессоры
- •3. Ротационные компрессоры и газодувки
- •4. Центробежные машины
- •5. Осевые вентиляторы и компрессоры
- •6. Винтовые компрессоры
- •7. Вакуум-насосы
- •8. Сравнение и области применения компрессорных машин различных типов
- •Лекция 6
- •V. Разделение неоднородных систем
- •V. Разделение неоднородных систем
- •1. Неоднородные системы и методы их разделения
- •Разделение жидких систем
- •2. Материальный баланс процесса разделения
- •А. Отстаивание
- •3. Скорость стесненного осаждения (отстаивания)
- •4. Отстойники
- •Б. Фильтрование
- •6. Общие сведения
- •6. Фильтровальные перегородки
- •7. Устройство фильтров
- •Лекция 7
- •VI. Перемешивание в жидких средах
- •В. Центрифугирование
- •1. Основные положения
- •2. Устройство центрифуг
- •Г. Разделение газовых систем (очистка газов)
- •1. Общие сведения
- •2. Гравитационная очистка газов
- •3. Очистка газов под действием инерционных и центробежных сил
- •4. Очистка газов фильтрованием
- •5. Мокрая очистка газов
- •6. Электрическая очистка газов
- •VI. Перемешивание в жидких средах
- •1. Общие сведения
- •2. Механическое перемешивание
- •3. Механические перемешивающие устройства
- •Лекция 8 кристаллизация
- •VII. Кристаллизация
- •1, Общие сведения
- •2. Устройство кристаллизаторов
- •Лекция 9
- •А. Крупное дробление
- •2. Щековые дробилки
- •3. Конусные дробилки
- •Б. Среднее и мелкое дробление
- •4. Валковые дробилки
- •5. Ударно-центробежные дробилки
- •В. Тонкое измельчение
- •6. Барабанные мельницы
- •7. Кольцевые мельницы
- •Г. Сверхтонкое измельчение
- •8. Мельницы для сверхтонкого измельчения
- •Некоторые другие методы разрушения твердых материалов
- •Лекция 10
- •1. Грохочение
- •Гидравлическая классификация и воздушная сепарация
- •X. Смешение твердых материалов
- •Дозирование твердых материалов
- •1. Бункеры и затворы к ним
- •2. Питатели
- •Питатели с тяговыми органами
- •Питатели с колебательным движением
- •Вращающиеся питатели
- •3. Дозаторы
- •Автоматические весы
- •Весовые ленточные дозаторы
- •Литература
6. Электрическая очистка газов
Физические
основы процесса.
Электрическая очистка основана на
ионизации молекул газа электрическим
разрядом. Если газ поместить в электрическое
поле, образованное двумя электродами,
к которым подведен постоянный электрический
ток высокого напряжения, то молекулы
(атомы) газа ионизируются, т. е. расщепляются
на положительно заряженные ионы и
электроны, которые начинают перемещаться
по направлению силовых линий.
Направление вектора скорости заряженных
частиц будет определяться их знаком, а
скорость движения и, следовательно,
кинетическая энергия — напряженностью
электрического поля. При повышении
разности потенциалов между электродами
(напряженности электрического поля) до
нескольких десятков тысяч вольт
кинетическая энергия ионов и электронов
возрастает настолько, что они при своем
движении, сталкиваясь с нейтральными
молекулами газа, будут расщеплять их
на положительные ионы и свободные
электроны. Вновь образовавшиеся заряды
при своем движении также ионизируют
газ. В результате образование ионов
происходит лавинообразно и газ полностью
ионизируется. Такая ионизация называется
ударной.
При полной ионизации газа между электродами возникают условия для электрического разряда. С дальнейшим увеличением напряженности электрического поля возможен проскок искр, а затем электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле путем устройства электродов в виде проволоки, натянутой по оси трубы (рис. V-50, а), или проволоки, натянутой между параллельными пластинами (рис. V-50, б). Густота силовых линий и, следовательно, напряженность поля в этих условиях наиболее высока у провода и постепенно убывает по мере приближения к трубе или пластине. Напряженность поля непосредственно у трубы (пластины) является недостаточной для искрообразования и электрического пробоя.
При
напряженности поля, достаточной для
полной ионизации, между электродами
возникает коронный разряд, сопровождающийся
голубовато-фиолетовым свечением,
образованием «короны» вокруг каждого
провода и характерным потрескиванием.
Электрод, вокруг которого образуется
«корона», носит название коронирующего
электрода, а другой, противоположно
заряженный электрод, выполненный в виде
трубы или пластины — осадительного
электрода. Коронирующие электроды
присоединяются к отрицательному полюсу
источника тока, а осадительные — к
положительному. При этом можно использовать
более высокое напряжение без появления
искрового разряда между электродами.
При возникновении «короны» образуются ионы обоих знаков и свободные электроны. Под действием электрического поля положительные ионы движутся к коронирующему электроду и нейтрализуются на нем, а отрицательные ионы и свободные электроны перемещаются к осадительному электроду. Соприкасаясь со встречными пылинками и капельками, решетку 8 (рис. V-34), поднимается вверх между параллельными листами осадительных электродов и очищенный удаляется через выходной газоход 9. Частицы пыли или тумана отделяются в электрическом поле от газа и оседают на поверхности осадительных электродов.
В сухих электрофильтрах пыль удаляется периодически при помощи различных ударных механизмов встряхивания электродов: молоткового, магнитно-импульсного и пр. В мокрых электрофильтрах осевшие частицы удаляются периодической или непрерывной промывкой внутренней поверхности осадительных электродов водой, распыляемой брызгалами или форсунками. В некоторых случаях промывная жидкость свободно стекает по внутренней поверхности электродов в виде пленки, на которую оседают взвешенные частицы.
В пластинчатых электрофильтрах легче, чем в трубчатых, удаляется осевшая на электродах пыль и меньше расходуется энергии на единицу длины проводов. Они более компактны, требуют меньшего расхода металла и отличаются простотой монтажа. Вместе с тем трубчатые электрофильтры позволяют получить большую напряженность электрического поля и соответственно допускают большие скорости газа, т.е. более производительны. В них лучше отделяется трудноулавливаемая пыль из газов умеренной влажности. Степень очистки достигает 99%, а иногда 99,9%.