
3. Результаты и обсуждение
3.1. Влияние рН среды
Для сравнения были взяты два образца полифенотиазина с однодневной разницей в получении. На рисунке 6 представлены рН-зависимости для обоих образцов. Можно видеть, что оба образца демонстрируют схожие зависимости.
Образец 1 Образец 2
Рисунок 6.Влияние рН среды на печатные электроды, модифицированные полифенотиазином, синтезированным в первый день (образец 1) и во второй день (образец 2).
3.2. Вольтамперометрические характеристики модифицированных электродов.
В ходе экспериментов были получены вольтамперограммы при различных концентрациях ферроцианидов в растворе с помощью электрода, модифцированного полифенотиазином 1 (образец 1) (рис.7). Рассчитаны токи пиков окисления и восстановления при соответствующих потенциалах (табл.3).
Рисунок 7.Вольтамперограммы, полученные с помощью электрода, модифицированного полифенотиазином 1, при различных концентрациях ферроцианидов в растворе.
Таблица 3.
Значения тока пиков окисления и восстановления ферроцианидов, полученные с помощью электрода, модифицированного полифенотиазином 1.
Рецептор |
СK3Fe(CN)6, М |
Eк, мВ |
Iк, мкA |
Eа,мВ |
Iа, мкA |
ПФТА 1 |
0 |
|
|
|
|
1×10-5 |
- |
- |
- |
- | |
5×10-5 |
0,297 |
2,985 |
0,525 |
2,029 | |
1×10-4 |
0,253 |
6,250 |
0,548 |
6,753 | |
5×10-4 |
0,163 |
19,061 |
0,566 |
41,072 |
Далее была выбрана оптимальная концентрация ферроцианидов, равная 5×10-3М, и получены вольтамперограммы в зависимости от скорости развертки потенциала (циклирование потенциала в диапазоне 5 ÷ 700 мВ) (рис 8).
Рисунок 8.Циклическая вольтамперограмма, полученная на электроде, модифицированом полифенотиазом 1, при различной скорости развертки. Концентрация ферроцианидов в растворе 5×10-3М.
Аналогичным образом были изучен и охарактеризован электрод, модифицированный полифенотиазном 2 (рис.9, 10).
Рисунок 9.Вольтамперограммы, полученные с помощью электрода, модифицированного полифенотиазином 2, при различных концентрациях ферроцианидов в растворе.
Рисунок 10.Циклическая вольтамперограмма, полученная на электроде, модифицированом полифенотиазом 1, при различной скорости развертки. Концентрация ферроцианидов в растворе 5×10-3М.
ВЫВОДЫ
Освоена методика изготовления потенциометрических сенсоров на основе планарных печатных электродов, модифицированных химически синтезированным полифенотиазином.
Освоена методика определения влияния рН среды на потенциометрический сигнал модифицированных электродов.
С помощью разработанных модифицированных электродов получены вольтамперометрические зависимости в растворе ферроцианидов при различной скорости развертки потенциала и при различных концентрациях ферроцианидов.
По полученным вольтамперограммам рассчитаны потенциалы и токи пиков окисления и восстановления.
СПИСОК ИСПОЛЬЗОВАННЫХ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ
1. Pretsch,E.Thenewwaveofion-selectiveelectrodes[Text] //E.Pretsch//TrendsinAnal.Chem.- 2007.-V.26, №.1.-P.46-51.
2. Bakker,E.Modernpotentiometry[Text] /E.Bakker,E.Pretsch//Angew.Chem.- 2007.-V.46.- P.5660-5668.
3. Bobacka, J. Ion sensors with conducting polymers as ion-to-electron transducers [Text] / J. Bobacka, A. Ivaska // In: Comprehensive Analytical Chemistry (S.Alegret, A.Merkoci ).- 2007.-V.49.-P.73-86.
4. Власов, Ю.Г. Мультисенсорная система на основе химических сенсоров и искусственных нейронных сетей ("электронный язык") / [Текст] Ю.Г.Власов, А.В.Легин, А.М. Рудницкая, К.Ди Натали, А. Д'Амиго // Журн.прикл.химии.- 1996.- Т.69, № 6.- С.958-972.
5. Камман, К. Работа с ион-селективными электродами [Текст] / К.Камман // М.- Мир.- 1980.- 283 с.
6. Grab,S.Metal-metaloxideandmetaloxideelectrodesaspHsensors[Text] /S.Grab,A.Hulanicki,G.Edwall;F.Ingman//Crit.Rev.inAnal.Chem.- 1989.-V.21, Т1.- P.29-47.
7. Okamoto, H. Effect of counter ions in electrochemical polymerization media on the structure and responses of the product polyaniline films. III. Structure and properties of polyaniline films prepared via electrochemical polymerization [Text] / H.Okamoto, T.Kotaka // Polymer.- 1999.- V. 40.- P.407-417.
8. Abrantes, L.M. On the initiation and growth of polymer films onto electrode surfaces [Text] / L.M.Abrantes, J.P.Correia // Electrochimica Acta- 1999.- V.44.- P.1901-1910.
9. Dobay, R. Conducting polymer based electrochemical sensors on thick film substrate [Text] / R.Dobay, G.Harsányi, C.Visy // Electroanalysis- 1999.- V.11.- P.804-808.
10. Trojanowicz, M. Application of conducting polymers in chemical analysis [Text] / M.Trojanowicz // Microchim.Acta- 2003.- V.143.- P.75-91.
11. Malinauskas, A. Conducting polymer-based nanostructurized materials: electrochemical aspects [Text] / A.Malinauskas, J.Malinauskiene, A.Ramanavicius // Nanotechnology- 2005.- V.16.- P.R51-R62.
12. Wiziack, N.K.L. Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films [Text] / N.K.L.Wiziack, L.G.Paterno, F.J.Fonseca, L.H.C.Mattoso // Sensors Actuators B.- 2007.- V.122.- P.484-492.
13. Yamamoto, K. Doping reaction of redox-active dopants into polyaniline [Text] / K. Yamamoto, M. Yamada, T. Nishiumi // Polym. Adv. Technol.- 2000.- V.11.- P.710-715.
14. Mazieikiene, R. Doping of polyaniline by some redox active organic anions [Text] / R. Mazieikiene, A.Malinauskas // European Polymer J. – 2000.- V.36.- P.1347-1353.
15. Schlereth, D.D. Electropolymerization of phenothiazine, phenoxazine and phenazine derivatives: characterization of the polymers by UV-visible difference spectroelectrochemistry and Fourier transform IR spectroscopy [Text] / D.D.Schlereth, A.A.Karyakin // J.Electroanal.Chem.- 1995.- V.395.- P.221-232.
16. Zhou, D. The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH [Text] / D.Zhou, H.Fang, H.Chen, H.Ju, Y.Wang // Anal.Chim.Acta- 1996.- V.329.- P.41-48.
17. Brett, C.M.A. Poly(methylene blue) modified electrode sensor for haemoglobin [text] / C.M.A.Brett, G.Inzelt, V.Kertesz // Anal.Chim.Acta.- 1999.- V.385.- P.119-123.
18. Wanekaya, A. Electrochemical detection of lead using overoxidized polypyrrole films [Text] / . A.Wanekaya, O. A. Sadik // J.Electroanal. Chem.- 2002.- V.537.- P. 135-143.
19. Özden, M. Electrochemical synthesis and optimization of poly(4-methoxyphenol) film as a sensor material [Text] / M.Özden, E.Ekinci , A.E.Karazögler // J. Appl. Polymer Sci.- 1998.- V.68.- P.1941-1947.
20. Palmisano, F. Amperometric biosensors based on electrosynthesized polymeric films [Text] / F.Palmisano, P.G.Zambonin, D.Centonze // Fresenius J.Anal.Chem.- 2000.- V.366.- P.586-601.
21. Laschi, S. Planar electrochemical sensors for biomedical applications [Text] / S. Laschi, M.Mascini // Med.Eng.Phys.- 2006.- V.28, № 10.- P.934-943.
22. Lindino, C.A. The potentiometric response of chemically modified electrodes [Text] / C.A.Lindino, L.O.S.Bulhões // Anal.Chim.Acta.- 1996.- V.334, №3.- P.317-322.
23. Hamdani, K. Polyaniline pH electrodes [Text] / K.Hamdani, K.L.Cheng // Microchem. J.- 1999.- V.61.- P.198-217.
24. Prakash, R. Electrochemistry of polyaniline: study of the pH effect and electrochromism [Text] / R. Prakash // J.Appl.Polymer Sci.- 2002.- V.83.- P.378-385.
25. Zhang, X. Solid-state pH-nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber [Text] / X.Zhang, B.Ogorevc, J.Wang // Anal.Chim.Acta.- 2002.- V.452.- P.1-10.
26. Lindfors, T. pH sensitivity of polyaniline and its substituted derivatives [Text] / T.Lindfors, A.Ivaska // J.Electroanal.Chem.- 2002.- V.531.- P.43-52.
27. Lindfors, T. Polyaniline as pH-sensitive component in plasticized PVC membranes [Text] / T.Lindfors, S.Ervelä, A.Ivaska // J.Electroanal.Chem.- 2003.- V.560.- P.69-78.
28. Ferrer-Anglada, N. Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors [Text / N.Ferrer-Anglada, M.Kaempgen, S.Roth // Phys.Stat.Sol. B.- 2006.- V.243.- P.3519-3523.
29. Eftekhar, А. Auto-release of Fe(CN)64- from conductive polymer at a sensing system // A. Eftekhar / Chem.Eng.Comm.- 2005.- V.192.- P.897-907.
30. Vázquez, M. Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes [Text] / M.Vázquez, J.Bobacka, M.Luostarinen, K.Rissanen, A.Lewenstam, A.Ivaska // J.Solid State Electrochem.- 2005.- V.9.- P.312-319.
31. Saint-Aman, E. Investigation of electrochemical reversibility and redox-active polypyrrole film formation of amide ferrocene-pyrrole derivatives [Text] / E.Saint-Aman, M.Ungurean, T.Visan, J.-C.Moutet.// Electrochimica Acta.- 1997.- V.42.- P.1829-1837.
32. Brisset, H. Electrosynthesis of a functional conducting polymer incorporating ferrocene unit from an EDOT-based bithiophenic precursor [Text] / H.Brisset, A.Navarro, F.Moggia, B.Jousselme, P.Blanchard, J.Roncali // J.Electroanal.Chem.- 2007.- V.603.- P.149-154.
33. Kharitonov, S.V. Novel thallium(III) solid-contact ion-selective electrode with electropolymerized transducer [Text] / S.V.Kharitonov, Y.V.Zarembo, V.I.Zarembo // Electroanalysis- 2006.- V.18, №13-14.- P.1354-1362.
34. Pandey, P.C. Characterization of electropolymerized polyindole : Application in the construction of a solid-state, ion-selective electrode [Text] / P.C.Pandey; R.Prakash // J.Electrochem.Soc. 1998.- V.145.- P.4103-4107.
35. Pournaghi-Azar, M.H. Potentiometric study of reaction between tetrabutylammonium
periodate and phenothiazine in chloroform; application to the analysis of phenothiazine derivatives[Text] / M.H. Pournaghi-Azar , Kh. Farhadi // Talanta – 1997.- V.44.- P.1773–1781.
36. Gligor, D. Photoelectrocatalytic Oxidation of NADH at a Graphite Electrode
Modified with a New Polymeric Phenothiazine[Text] / D. Gligor, Y.Dilgin, I.C.Popescu, L.Gortonc // Electroanalysis- 2009.- V.21.- №3-5.- P.360 – 367.
37. Nathan S, Lawrence. Chemical adsorption of phenothiazine dyes onto carbon
nanotubes: Toward the low potential detection of NADH [Text] / N.S. Lawrence, J. Wang // Electrochemistry Communications – 2006.- V.8.- P.71–76.
38. Mittal, S. Potentiometric performance of 2-aminothiophenol based dipodal
ionophore as a silver sensing material[Text]/ S.K. Mittal, A.S.K. Kumar, S.Kaur, S. Kumar [Text]// Sensors and Actuators -2007.- V.121.- P.386–395.
39. Delia,D. Modified electrodes with new phenothiazine derivatives for
electrocatyltic oxidation of NADH [Text]/ D.Dicu, L.Muresan, I.C.Popescu, C.Cristea,
I.A.Silberg, P.Brouant[Text]// Electrochimica Acta – 2000.- V.45.- P.3951–3957.
40. Brunetti B.Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators atnanoelectrode ensembles [Text]/B.Brunetti,P.Ugo,L.M.Moretto,C.R.Martin// Electroanalysis- 2000.- V.491.- P.166-174.