
- •1. Развитие представлений о природе света.
- •2. Понятие о когерентности электромагнитных волн.
- •3. Интерференция света. Условие интерферентности волн.
- •4. Методы наблюдения интерференции света. Метод Юнга.
- •6. Расчет интерференциоии от 2-х источников света
- •5. Методы наблюдения интерференции света. Зеркала Френеля.
- •7. Интерференция в тонких пленках.
- •8. Ннтерференционные приборы и их применение.
- •9. Принцип Гюйгенса-Френеля.
- •10. Метод зон Френеля.
- •11. Явление дифракции. Дифракция Френеля на круглом отверстии.
- •Дифракция френеля на круглых отверстиях
- •12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
- •14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
- •15. Расчет формулы дифракционной решетки
- •16. Применение дифракционной решетки. Разрешающая способность.
- •Применение явлений д-ии света
- •17. Дифракция рентгеновских лучей.
- •18 .Основы голограмм.
- •19. Дисперсия света.
- •33. Квантовая теория Планка. Формула Планка.
- •20. Электронная теория дисперсии света.
- •21. Поглощение света. Закон Бугера.
- •В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
- •27. Вращение плоскости поляризации. Эффект Фарадея.
- •28. Тепловое излучение и его характеристики.
- •29. Закон Кирхгофа для равновесного излучения.
- •30 Абсолютно черное тело. Закон Стефана-Больцмана.
- •72. Ядерные реакции и законы сохранения.
- •31. Абсолютно черное тело. Закон смещения Вина.
- •32. Абсолютно черное тело. Формула Релея-Джинса.
- •34. Внешний фотоэффект и его законы.
- •35. Уравнение Эйнштейна для внешнего фотоэффекта.
- •36. Модель атома Резерфорда и ее недостатки.
- •37. Закономерности в спектре излучения атома водорода.
- •38. Постулаты Бора. Модель атома Бора.
- •39. Корпускулярно-волновой дуализм свойств вещества.
- •44. Уравнение Шредингера для стационарных состояний.
- •40. Волны де Бройля и их свойства.
- •41. Соотношение неопределенности Гейзенберга.
- •42. Волновая функция и её статический смысл.
- •43. Общее уравнение Шредингера нерелятивистской квантовой механики
- •45. Прохождение частицы через потенциальный барьер.
- •46. Решение уравнения Шредингера для водородоподобных атомов
- •47. Квантовые числа, их физический смысл.
- •49. Спин электрон. Спиновое квантовое число.
- •48. Пространственное распределение электрона в атоме водорода.
- •50. Принцип Паули. Распределение электронов в атоме по состояниям.
- •55. Спонтанное и вынужденное излучение фотонов.
- •51. Периодическая система Менделеева.
- •52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
- •73. Реакция деления ядер.
- •53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
- •54. Колебательные и вращательные спектры молекул.
- •56. Принцип работы квантового генератора.
- •57. Твердотельные и газоразрядные лазеры. Их применение.
- •58. Фононы. Теплоемкость кристаллической решетки.
- •59. Элементы зонной теории в кристаллах.
- •60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
- •61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
- •63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
- •66. Электронные и дырочные полупроводники.
- •62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
- •64. Собственная проводимость полупроводников.
- •65. Примесная проводимость полупроводников.
- •67. Контакт электронного и дырочного полупроводников …
- •68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
- •69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
- •71. Правила смещения. Α-распад. Взаимопревращения …
- •70. Естественная радиоактивность. Закон радиоактивного распада.
- •75. Термоядерная реакция и проблемы её управления.
- •76. Элементарные частицы. Космическое излучение. …
- •74. Цепная реакция деления ядер. Ядерный реактор.
46. Решение уравнения Шредингера для водородоподобных атомов
Решение уравнения Шредингера удобно искать в виде ψ(r,θ,φ)=R(r)θ(θ)Ф(φ), т.е. представим волновую функцию в виде произведения 3-х функций, каждая из кот-х зависит только от 1 переменной. R(r)-радиальная функция распределения; θ(θ) и Ф(φ) – функции углового распределения. В зависимости от значения орбитального квантового числа L=0,1,2,3,… состояние электрона в атоме обозначают s,p,d,f. Для электрона 1s-состоянии(n=1,L=0) функция радиального распределения R(r) имеет вид: Максимум этой функции приходится на r=0,529Å, т.е. совпадает с 1-м боровским радиусом. Функция углового распределения для 1s состояния: Для электронов p-состояний функция углового распределения имеет вид в зависимости от значения магнитного квантового числа: Видно, что современным представлениям соответствуют не орбиты, по кот-м движется электрон в атоме, а некоторая совокупность положений электронов в атоме(электронное облако, форма кот-го определяется значением квантовых чисел m, n, L, поэтому вместо термина орбита используют термин орбиталь. Каждой орбитали соответствует своё состояние электрона в вакууме, описанное волновой функцией. Mz=mħ p-состояние: L=1;m=0,±1 Видно, что положение вектора М в пространстве квантуется. Он может принимать только определённое положение в пространстве. Энергия электрона в атоме зависит от главного квантового числа n. Однако, при данном значении n, кроме n=1, значение L и m могут быть разными. Это значит, что одному и тому же уровню энергии En(собственное значение энергии) соответствует несколько различных состояний, каждое из которых описано своей волновой функцией. Состояния с одинаковыми энергиями наз-ся вырожденными. Число состояний, обладающих данным значением энергии En наз-ся кратностью вырождения. Кратность вырождения можно сосчитать по формуле: Σ[L=0, n-1] (2L+1)=2*n(c.2).
47. Квантовые числа, их физический смысл.
Квантовые числа – целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Еn электрона (Еn = -13.6/n2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n – 1, определяющим величину L орбитального момента количества движения электрона (L = [l(l + 1)]1/2); магнитным квантовым числом m < ± l , определяющим направление вектора орбитального момента; и квантовым числом ms = ± 1/2, определяющим направление вектора спина электрона.
n Главное квантовое число: n = 1, 2, … .
j Квантовое число полного углового момента. j никогда не бывает
отрицательным и может быть целым (включая ноль) или полуцелым в зависимости от свойств рассматриваемой системы. Величина полного углового момента J связана с j соотношением
J2 = 2j(j + 1). = + ,
где и векторы орбитального и спинового угловых моментов.
l Квантовое число орбитального углового момента l может принимать только целые значения: l = 0, 1, 2, … . Величина орбитального углового L момента связана с l соотношением L2 = 2l(l + 1).
m Магнитное квантовое число. Проекция полного, орбитального или спинового углового момента на выделенную ось (обычно ось z) равна m.
Для полного момента mj = j, j-1, j-2, …, - (j-1), - j. Для орбитального момента ml = l, l-1, l-2, …, -(l-1), -l.
Для спинового момента электрона, протона, нейтрона, кварка ms = ±1/2
s Квантовое число спинового углового момента s может быть либо целым, либо полуцелым. s - неизменная характеристика частицы, определяемая ее свойствами. Величина спинового момента S связана с s соотношением S2 = 2s(s + 1).
P Пространственная четность. Она равна либо +1, либо -1 и
характеризует поведение системы при зеркальном отражении. P = (-1)l.