
- •1. Развитие представлений о природе света.
- •2. Понятие о когерентности электромагнитных волн.
- •3. Интерференция света. Условие интерферентности волн.
- •4. Методы наблюдения интерференции света. Метод Юнга.
- •6. Расчет интерференциоии от 2-х источников света
- •5. Методы наблюдения интерференции света. Зеркала Френеля.
- •7. Интерференция в тонких пленках.
- •8. Ннтерференционные приборы и их применение.
- •9. Принцип Гюйгенса-Френеля.
- •10. Метод зон Френеля.
- •11. Явление дифракции. Дифракция Френеля на круглом отверстии.
- •Дифракция френеля на круглых отверстиях
- •12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
- •14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
- •15. Расчет формулы дифракционной решетки
- •16. Применение дифракционной решетки. Разрешающая способность.
- •Применение явлений д-ии света
- •17. Дифракция рентгеновских лучей.
- •18 .Основы голограмм.
- •19. Дисперсия света.
- •33. Квантовая теория Планка. Формула Планка.
- •20. Электронная теория дисперсии света.
- •21. Поглощение света. Закон Бугера.
- •В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
- •27. Вращение плоскости поляризации. Эффект Фарадея.
- •28. Тепловое излучение и его характеристики.
- •29. Закон Кирхгофа для равновесного излучения.
- •30 Абсолютно черное тело. Закон Стефана-Больцмана.
- •72. Ядерные реакции и законы сохранения.
- •31. Абсолютно черное тело. Закон смещения Вина.
- •32. Абсолютно черное тело. Формула Релея-Джинса.
- •34. Внешний фотоэффект и его законы.
- •35. Уравнение Эйнштейна для внешнего фотоэффекта.
- •36. Модель атома Резерфорда и ее недостатки.
- •37. Закономерности в спектре излучения атома водорода.
- •38. Постулаты Бора. Модель атома Бора.
- •39. Корпускулярно-волновой дуализм свойств вещества.
- •44. Уравнение Шредингера для стационарных состояний.
- •40. Волны де Бройля и их свойства.
- •41. Соотношение неопределенности Гейзенберга.
- •42. Волновая функция и её статический смысл.
- •43. Общее уравнение Шредингера нерелятивистской квантовой механики
- •45. Прохождение частицы через потенциальный барьер.
- •46. Решение уравнения Шредингера для водородоподобных атомов
- •47. Квантовые числа, их физический смысл.
- •49. Спин электрон. Спиновое квантовое число.
- •48. Пространственное распределение электрона в атоме водорода.
- •50. Принцип Паули. Распределение электронов в атоме по состояниям.
- •55. Спонтанное и вынужденное излучение фотонов.
- •51. Периодическая система Менделеева.
- •52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
- •73. Реакция деления ядер.
- •53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
- •54. Колебательные и вращательные спектры молекул.
- •56. Принцип работы квантового генератора.
- •57. Твердотельные и газоразрядные лазеры. Их применение.
- •58. Фононы. Теплоемкость кристаллической решетки.
- •59. Элементы зонной теории в кристаллах.
- •60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
- •61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
- •63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
- •66. Электронные и дырочные полупроводники.
- •62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
- •64. Собственная проводимость полупроводников.
- •65. Примесная проводимость полупроводников.
- •67. Контакт электронного и дырочного полупроводников …
- •68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
- •69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
- •71. Правила смещения. Α-распад. Взаимопревращения …
- •70. Естественная радиоактивность. Закон радиоактивного распада.
- •75. Термоядерная реакция и проблемы её управления.
- •76. Элементарные частицы. Космическое излучение. …
- •74. Цепная реакция деления ядер. Ядерный реактор.
21. Поглощение света. Закон Бугера.
Поглощение света – явление уменьшения энергии световой волны при ее распространении в веществе в следствии преобразования энергии волны в другие виды.
Это явление опис-ся законом Бугера. I=I0*e –kx. k – показатель поглащения зависящий от длины волны λ и от св-в вещ-ва (плотность, температура). Т.к. k зависит от λ, то данный закно м. переписать для монохр-й волны: I=I0*e–Kλx. kλ зависит только от св-в вещ-ва и наз-ся спектром поглощения вещ-ва.
22.
Естественный и поляризованный свет.
Согласно электро-магнитной теории Максвела, световые волны поперечны и происходят перпедикулярно направлению распространения волны. Из моментального снимка электро-магнитные волны =>, что колебания вектора E вдоль волны распространяются в одной плоскости ZOX. Это плоскость – плоскость колебаний. Перпендикулярная ей плоскость XOY, в которой колеблются векторы H, условно называют плоскостью поляризации.
В естественной волне, испускаемой естественными излучателями, колебания векторов E и H происходят вдоль всех возможных направлений, перпендикулярных направлению распространения волны. Свет, в котором колебания вектора E происходит с одинаковой вероятностью вдоль всех направлений, перпендикулярных направлению распространения, называется естественным. Свет называется частично поляризованным, если векторы E колеблются вдоль всех направлений, но одно направление является преимущественным. Свет называется плоскополяризованным, если колебания вектора E происходит в одном направлении. Т.о. явление поляризации света – процесс выделения световых волн с одинаковой ориентацией вектора Е.
23. Закон Малюса для поляризованного света.
Интенсивность
прошедшего света равна интенсивности
падающего света на угол между плоскостью
колебаний падающего света и плоскостью
поляризатора..
Поставим
на пути естественного света два
поляризатора, плоскости которых
составляют угол
.
Из первого поляризатора выйдет
плоско-поляризованный свет, интенсивность
которого
.
Согласно закону Малюса из второго
поляризатора выйдет свет интенсивности
.
Интенсивность света, прошедшего второй
поляризатор равна:
.
Максимальная
интенсивность, равная
получается при
(поляризаторы параллельны). При
интенсивность равна нулю (скрещенные
поляризаторы света не пропускают).
24. Поляризацмя света при отражении. Закон Брюстера.
Опыт показывает, что при падении на диэлектрик (вода, стекло) отраженный и преломленный лучи всегда частично поляризованы. Степень поляризации при этом зависит от угла падения и показателя преломления отражающей среды. При этом отраженный луч частично поляризован в плоскости, перпендикулярной плоскости падения, а преломленный - в плоскости падения. Условие полной поляризации состоит в том, чтобы угол между отраженным и преломленным лучами был равен π/2, т.е. чтобы n=sin i0/sin r= sin i0/cos i0=tg i0. Это соотношение называют законом Брюстера. Этот закон объясняется тем, что отраженный преломленный лучи представляют собой вторичное излучение, возбужденное падающей волной. Электроны колеблются в направлении вектора Е. Однако электрический диполь не излучает в этом направлении, максимум излучения приходится на перпендикулярное направление.
25. Двойное лучепреломление и его объяснение.
При
прохождении света ч/з все прозрачные
кристаллы, за исключением принадлежащих
к кубической системе, наблюдается
явление, получившее название двойного
лучепреломления. Это явление закл-ся в
том, что упавший на кристалл луч
разделяется внутри кристалла на два
луча, распространяющиеся с разными
скоростями и в разл направлениях.
Кристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные (исландский шпат, кварц и турмалин) и двуосные (слюда, гипс). У одноосных кристаллов один из преломленных лучей подчиняется обычному закону преломления, в частности он лежит в одной плоскости с падающим чучом и нормалью к преломляющей поверхности. Этот луч наз-ся обыкн-м о. Для другого луча – необыкн-ного е, отношение синусов угла падения и угла преломления не остается постоянным при изменении угла падения. У двуосных оба луча необ-е.
26. Искусственная анизатропия. Эффект Керра.