Воробьев Теория электромагн поля и СВЧ (Кривець)
.pdf
241
линзами происходит дифракционное расхождение пучка. Поперечный размер области, занятой полем вблизи линзы, меньше или равен её апертуре. При удалении от апертуры он сначала уменьшается, а затем - вновь увеличивается. На следующую линзу попадает расходящийся пучок, линза опять фокусирует его, и картина повторяется. Такой процесс можно изобразить в виде картины лучей, представленной на рис. 4.35. Все лучи касаются некоторой поверхности - каустики (штриховая линия). Роль линзы, таким образом, состоит в том, чтобы восстановить распределение фазы поля по сечению пучка, так как распределение амплитуды поля практически не нарушается. Если поле волны (какой-либо её компоненты), подходящей к линзе, есть ν , то уходящая волна должна
• |
|
ψ (x, y) |
иметь поле U (x, y)exp − jψ (x, y) . Функция |
||
|
|
|
характеризует фазовую коррекцию, которая обеспечивается различием в оптических длинах лучей, проходящих сквозь разные точки линзы. Таким образом, можно сказать, что линза – это фазовый корректор поля.
L
Рисунок 4.35 – Схема формирования квазиоптического волнового пучка диэлектрическими линзами
Наиболее изучены квадратичные корректоры, для которых
|
|
242 |
|
|
ψ (x, y) = −ν k (x2 + y2 )/ L . |
(4.16) |
|
В выражении (4.16) величина ν равна |
отношению |
||
расстояния |
между линзами (зеркалами) к удвоенному |
||
фокусному |
расстоянию: |
ν = L / 2 f . |
Наибольшая |
концентрация поля вблизи оси достигается при ν =1, т.е. при фазовой коррекции
ψ (x, y) = −k (x2 + y2 )/ 2 f . |
(4.17) |
Зеркала резонаторов, для которых выполнено условие (4.17), представляют собой части поверхности сферы. В случае линзовой линии форма линз зависит от диэлектрической проницаемости материала.
Принципы возбуждения открытых резонаторов (ОР) во многом аналогичны принципам возбуждения объёмных резонаторов (см. п.4.5). Обычно используются сосредоточенные элементы связи (щели, отверстия), которые располагаются на поверхности одного из зеркал ОР [28, 29]. Заметим, что сосредоточенное возбуждение открытого волновода вследствие отсутствия резонанса гораздо менее эффективно, чем такое же возбуждение открытого резонатора. Поэтому для возбуждения волны в открытом волноводе нужно вводить в него волновой пучок, близкий по структуре поля к соответствующей волне, прибегая к устройствам, формирующим такой волновой пучок [28].
Так, например, в электронике МСМ диапазонов для возбуждения квазиоптических систем в основном используются радиационные эффекты, которые возникают при движении заряженных частиц. К таким эффектам относятся черенковское и переходное излучения, а также их разновидности: индуцированное излучение, излучение Смита-Парселла (дифракционное излучение).
Черенковское излучение (ЧИ) возбуждается при равномерном движении электронов (или другой
243
заряженной частицы) в среде со скоростью ve , большей
скорости волны в этой среде. Существует зависимость фазовой скорости волны vф в безграничной среде от
диэлектрической и магнитной проницаемостей, которая
определяется |
соотношением |
vф = с/ εµ . |
Данное |
электромагнитное излучение характеризуется специфическим угловым распределением, которое заключается в том, что волновой вектор излучаемых волн образует с вектором скорости ve угол γ0 , определяемый
соотношением cosγ0 = c / ve εµ . Поскольку cosγ0 всегда
меньше единицы, то черенковское излучение возможно только при ve > vф . Черенковское излучение будет
наблюдаться и в том случае, если электронный поток будет двигаться не только в сплошной среде, но и в вблизи среды на расстоянии порядка длины излучаемой волны.
В случае ЧИ предполагается, что среда, в которой возникает излучение, является однородной и её свойства неизменны во времени. Если же свойства среды изменяются во времени вдоль траектории движения частицы, то излучение возникает при любой скорости движения заряда. Такое излучение получило название переходного и в простейшем случае возникает на границе раздела двух сред при прямолинейном и равномерном движении заряда с любой скоростью.
При движении частицы вблизи других неоднородностей, таких как экраны с отверстиями или тела конечных размеров, также возникает излучение, и оно получило название дифракционного излучения (ДИ). Физическая природа переходного и дифракционного излучений одна и та же. Поле пролетающей частицы наводит в неоднородности переменные токи или заряды. Движущийся заряд и неоднородность представляют собой
244
два необходимых компонента для того, чтобы возникло излучение. При периодичном расположении неоднородностей (например, периодическая структура типа гребёнки, см. рис. 4.18 а) интенсивность и когерентность дифракционного излучения существенно возрастают при соответствующем выборе параметров периодической структуры и скорости электронного пучка
[30].
Кроме потоков заряженных частиц (релятивистских и нерелятивистских), в качестве распределённых источников формирования пространственных (объёмных) волн, в квазиоптических системах МСМ диапазонов широкое применение нашли также планарные ДВ, которые при их расположении вдоль периодических неоднородностей различного типа позволяют, за счёт возбуждения поверхностной волны и трансформации её в пространственную [30, 31], моделировать режимы черенковского и дифракционного излучений в квазиоптических системах. Различные типы комбинаций периодическая система – ДВ позволяют также решать вопросы создания сложных антенных систем, организации вывода энергии в устройствах электроники и построения функциональных элементов РЭС.
При этом угол излучения пространственных волн на дифракционной решётке типа гребёнка определяется следующим соотношением [31]:
α = arccos(1/ βв + n / k ), |
(4.18) |
где βв = vф / c – относительная скорость |
волны в |
диэлектрическом волноводе; vф - фазовая скорость волны;
n =-1, -2, |
… - номер |
пространственной |
гармоники |
излучения; |
k = Ln / λ - |
волновое число; Ln |
- период |
дифракционной решётки (ДР); λ - длина волны излучения. Преобладания того или иного типа волн можно добиться
245
путём выбора параметров излучателя: периода решётки, скорости волны в волноводе (или скорости электронного пучка) и расстояния ДВ-ДР.
Классические квазиоптические системы. К
классическим квазиоптическим системам можно отнести двухзеркальные открытые резонаторы и линии передачи без неоднородностей, которые приведены на рис. 4.33, 4.34.
В простейшем случае открытый резонатор состоит из двух плоских тонких дисков, расположенных параллельно
друг другу так, |
что их |
оси симметрии |
совпадают |
(см. рис. 4.33 а). |
Такой |
резонатор |
называется |
плоскопараллельным и является аналогом известного в оптике интерферометра Фабри-Перо.
Плоскопараллельные резонаторы обладают рядом ценных качеств: имеют разрежённый спектр резонансных частот, однородное поле вдоль оси симметрии резонатора, длина волны в резонаторе мало отличается от длины волны в свободном пространстве.
Однако сложность юстировки, сравнительно большие размеры, недостаточное разделение видов колебаний по потерям привели к тому, что более перспективными в МСМ диапазонах являются резонаторы с отражателями, обладающими свойством квадратичной фазовой коррекции. Резонаторы такого типа получили название конфокальных и состоят из сферических зеркал, как показано на рис. 4.34 а. Такие резонаторы имеют большую разрешающую способность, чем плоскопараллельные. Кроме того, конфокальные резонаторы менее критичны к разъюстировке. Для резонатора со сферическими отражателями характерны значительно меньшие потери энергии на один проход по сравнению с открытым резонатором, имеющим плоские зеркала и такую же апертуру. Важным его преимуществом является большее
246
разделение по потерям основного и высших видов колебаний, которые принято обозначать TEMmnq , где
индексы m , n =0, 1, 2, ... описывают поперечные составляющие колебаний, а q – продольный индекс
колебаний, определяет количество полуволн, укладывающихся по оси ОР. Для резонатора с круглыми зеркалами резонансные расстояния или резонансные длины волн видов колебаний должны удовлетворять следующему соотношению:
2H = q + |
1 |
(m + 2n +1)arccos |
g g |
|
, |
|
2 |
||||
λ |
π |
1 |
|
||
|
|
|
|||
где H - расстояние между зеркалами; λ - длина волны в |
|||||
открытом резонаторе; g1 =1− H / R1 ; g2 |
=1− H / R2 ; R1 , R2 |
||||
- радиусы кривизны зеркал.
Ограничение апертур ОР вызывает потери на излучение в свободное пространство и слабо влияет на распределение полей в открытом резонаторе. Отсюда следует, чтобы потери были малы, поле должно быть сконцентрировано вблизи центра зеркала. Это, в свою очередь, накладывает ограничение на выбор соотношений между радиусами кривизны зеркал и расстоянием между ними. Для получения резонаторов, поле в которых достаточно быстро спадает при увеличении радиальной координаты, расстояние между зеркалами должно выбираться в интервалах:
0< g1g2 <1.
Последнее выражение называют условием "устойчивости" резонатора с квадратичной коррекцией.
Большое распространение в технике МСМ волн получили также полусферические резонаторы, состоящие из одного плоского и одного сферического зеркал. Известно, что в полусферическом ОР основными колебаниями являются азимутально-однородные
|
|
247 |
|
колебания |
TEMm0q . |
Добротность |
колебаний |
полусферического ОР зависит от дифракционных потерь (потерь на излучение) на краях плоского и сферического зеркал, омических потерь на тех же зеркалах, потерь на связь, потерь на затухание в среде.
В качестве колебательной системы можно также эффективно использовать ОР с зеркалами, выполненными в виде двугранных отражателей. Резонатор с двугранными отражателями характеризуется очень малыми дифракционными потерями и сравнительно малочувствителен к перекосам отражателей. В миллиметровом диапазоне его изготовление, по сравнению с конфокальным резонатором, проще.
Квазиоптические системы с периодическими металлическими неоднородностями. Для возбуждения объёмных волн в квазиоптических системах широко применяются периодические структуры (см. п.4.4), которые с учётом специфики МСМ диапазона, получили название дифракционных решёток (ДР). Основные типы квазиоптических систем с периодическими неоднородностями представлены на рис. 4.36.
На базе полусферического ОР с дифракционной решёткой (см. рис. 4.36 а), расположенной в центральной части плоского зеркала, реализованы генераторы дифракционного излучения (ГДИ) [30], принцип действия которых основывается на использовании эффекта дифракционного излучения. Возбуждаемые в ОР объёмные волны, отражаясь от сферического зеркала, падают на решётку и, трансформируясь в поверхностные, взаимодействуют с электронным пучком (ЭП). При этом в такой системе возможна реализация режимов генерации и усиления электромагнитных волн. Следовательно, выходные характеристики ГДИ существенным образом определяются свойствами используемого ОР. Наличие
|
|
|
|
248 |
|
|
|
периодической структуры в ОР ГДИ значительно |
|||||||
видоизменяет |
характеристики |
описанных |
выше |
||||
классических резонансных квазиоптических структур. |
|||||||
Основным в таком ОР является TEM20q |
тип колебания. |
||||||
|
4 |
|
|
|
4 |
|
|
|
|
|
|
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
1 |
|
|
|
3 |
|
|
|
а |
2 |
|
1 |
|
|
|
|
|
|
4 |
|
в |
|||
|
|
|
|
|
|
||
|
Рвх |
Рвых |
1 |
|
|
2 |
|
|
|
1 |
|
|
|
||
|
|
|
|
3 |
|
|
|
|
|
|
|
Рвх |
|
|
Рвых |
1 |
б |
2 |
3 |
1 |
|
г |
2 |
|
|
|
|
|
|
||
Рисунок 4.36 – Основные типы квазиоптических систем с периодическими металлическими неоднородностями: а – полусферический ОР с отражательной ДР; б – открытый волновод с отражательной ДР; в – параллельно-связанные через ленточные ДР открытые резонаторы; г – открытый волновод с дифракционно-связанными источниками излучения (1 – зеркала ОР или ОВ, 2 – отражательная или ленточная ДР, 3 – источник поверхностной волны (ЭП или ДВ), 4 – вывод энергии)
249
Впервые волноводный вариант усилителя на эффекте Смита-Парселла (дифракционного излучения) был предложен в [32], где нерелятивистский ЭП взаимодействует с бегущей волной дифракционного излучения в открытой волноведущей системе, образованной поверхностями пассивного и активного (с дифракционной решёткой) зеркал (см. рис. 4.36 б).
Перспективными в плане создания новых модификаций устройств электроники и техники МСМ волн являются также многосвязные квазиоптические системы, содержащие не менее двух источников объёмных волн. В частности, к таким системам можно отнести связанные ОР, которые могут быть реализованы как за счёт последовательного расположения вдоль общей оси, например, двух полусферических ОР (см. рис. 4.36 а), так и за счёт параллельного включение ОР относительно оси распределённого источника излучения (рис. 4.36 в).
В первом случае связь в таких устройствах реализуется через дифрагированное на краях зеркал поле, а во втором варианте выполнения – через ленточные решётки, расположенные в объёме сфероидального ОР и разделяющие его на два полусферических резонатора. Устройства, выполненные на связанных ОР, по сравнению с однорезонаторными, обладают рядом преимуществ: имеют более широкую полосу пропускания, могут эффективно использоваться в качестве электродинамических систем усилителей мощности и умножителей частоты [30].
Открытый волновод, образованный двумя дифракционными решётками плоской или цилиндрической формы (см. рис. 4.36 г), также относится к многосвязной квазиоптической системе, которая может быть использована при создании усилителя на эффекте СмитаПарселла. Эффект усиления в такой системе реализуется
250
путём использования двух дифракционно-связанных источников излучения (см. рис. 4.36 г), один из которых (активный) образован системой отражательная решётка – ЭП, а второй (пассивный) представляет собой устройство ввода-вывода энергии, выполненное в виде системы ДР – ДВ, формирующей объёмную волну. При квазисинхронизме скорости ЭП с одной из поверхностных волн, дифрагированного на решётке поля, происходит группировка электронов в сгустки, излучающие на частоте входного сигнала. На решётке пассивного зеркала происходит обратное преобразование объёмной волны в поверхностную волну диэлектрического волновода с последующим её переизлучением в открытый волновод. При условии синфазного излучения с активного и пассивного источников, наблюдается эффект усиления медленной волной пространственного заряда ЭП прямой волны ОВ.
При возбуждении системы двумя пассивными источниками излучения (диэлектрическими волноводами) (см. рис. 4.36 г) происходит последовательное преобразование поверхностных волн в пространственные и пространственных – в поверхностные. Вдоль оси системы формируются синфазные и противофазные волны, в результате интерференции которых происходит разделение падающей и отражённой мощности, что позволяет на базе такой системы создать квазиоптический направленный ответвитель [33].
При реализации полупроводниковых источников МСМ волн и элементной базы широкое применение нашли уголково-эшелеттные ОР. На базе таких электродинамических систем предложены различные модификации квазиоптических твёрдотельных генераторов накачки со сферо-уголково-эшелеттными ОР, которые
