Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
291
Добавлен:
23.03.2016
Размер:
9.72 Mб
Скачать

6.5.3. Репарация генетического материала, её биологическое значение, механизм и системы

Важное значение для ограничения неблагоприятных последствий генных мутаций имеют естественные антимутационные барьеры. Одним из них является парность хромосом в диплоидных наборах хромосом эукариот, которая препятствует проявлению рецессивных мутаций у гетерозиготных особей. Главным антимутационным барьером рассматривается выработавшая в процессе эволюции способность к репарации наследственного материала. Её сущность - в устранении из наследственного материала клетки изменённого участка.

Различают 3 системы репарации генетического материала: эксцизионная репарация (репарация путём «вырезания»), фоторепарация и пострепликативная репарация.

Механизм эксцизионной репарации заключается в ферментативном разрушении изменённого участка молекулы ДНК с последующим восстановлением на этом отрезке нормальной последовательности нуклеотидов. Такой механизм включает следующие этапы (рис. 81): а) разрыв спирали ДНК у места повреждения при участии эндонуклеаз; б) удаление повреждённого участка с запасом в обе стороны с помощью эндонуклеаз; в) синтез при участии ДНК-полимеразы на месте дефекта нормального участка ДНК; г) «сшивание» последнего с образовававшимися концами спирали ДНК при помощи фермента ДНК-лигазы (восстановление непрерывности ДНК).

Н

Рис. 81. Этапы вырезания и репарации повреждённого участка молекулы ДНК

апример, под действием УФ-лучей у человека нарушается комплементарность пар нуклеотидов в двойной спирали ДНК (появляются пары Т-Т, Ц-Ц и т.п.). Они устраняются вышеописанным способом. Однако у различных индивидуумов наблюдаются генетические различия в активности репаративных ферментов и надёжности функционирования механизма ферментативного разрушения изменённого участка молекулы ДНК в целом. У ряда людей наблюдается изменение ДНК и, как следствие, возникновение заболевания «пигментная ксеродерма».

В клетках эукариот обнаружены два вида репарации «путём вырезания»: 1) более продолжительная репарация (длительность процесса - от 1 до 24 часов), восстанавливающая большой фрагмент ДНК (около 100 нуклеотидов); 2) быстродействующая репарация (продолжается от 5 минут до 2 часов), восстанавливающая 3-4 нуклеотида.

Пострепликативная репарация «включается» тогда, когда эксцизионная репарация «не справляется» с устранением всех повреждений, возникших в ДНК до её репликации. При репликации во второй спирали ДНК возникают бреши - однонитевые пробелы, соответствующие изменённым нуклеотидам первой спирали. Бреши заполняются участками цепи с нормальной последовательностью нуклеотидов уже в ходе пострепликативной репарации при участии ДНК-полимеразы.

Фоторепарация заключается в расщеплении ферментом (дезоксирибопиримидинфотолиазой), активируемым видимым светом, циклобутановых димеров, возникающих в ДНК под действием ультрафиолетового излучения.

Механизмам репарации свойственны нарушения и «сбои», которые приводят к повышению чистоты мутаций. Известны специфические мутации, блокирующие механизмы репарации и вызывающие наследственные заболевания (пигментная ксеродерма и др.).

Биологическое значение репарации ДНК заключается в резком снижении частоты мутаций, большинство которых оказываются летальными и полулетальными или же снижающими жизнеспособность организмов, вызывающими аномалии и обусловливающими тератогенез. Благодаря репарации ДНК повышается устойчивость генотипа организма к повреждающим агентам (мутагенам).

Соседние файлы в папке Часть1