
- •Введение
- •1. Помехи при обработке сигналов
- •1.1. Виды помех. Шумовая помеха
- •1.2. Реверберационная помеха
- •1.3. Статистические характеристики реверберации
- •2. Фильтрация сигналов на фоне помех
- •2.1. Постановка задачи фильтрации
- •2.2. Оптимальные фильтры устройств обнаружения
- •2.3. Согласованные фильтры
- •2.4. Согласованный фильтр и корреляционный приемник
- •2. 5. Физически возможные фильтры. Квазиоптимальные фильтры
- •2. 6. Синтез оптимальных фильтров
- •2.6.1. Синтез согласованного фильтра для прямоугольного видеоимпульса
- •2.6.2. Синтез оптимального фильтра для приема прямоугольного импульса на фоне коррелированного шума
- •2.6.3. Синтез фильтров, согласованных с радиоимпульсом
- •0 Вне интервала .
- •2. 7. Фильтрация сигнала на фоне реверберационной помехи
- •2. 8. Оптимальная фильтрация сигналов по критерию минимума среднеквадратической ошибки (сглаживающие и прогнозирующие фильтры)
- •3. Основы теории обнаружения сигналов на фоне помех
- •3. 1. Постановка задачи
- •3. 2. Метод статистических решений
- •3. 3. Возможные решения при обнаружении сигнала
- •3. 4. Критерии оптимального обнаружения
- •3. 5. Простейший обнаружитель Неймана-Пирсона
- •3. 6. Бинарное обнаружение полностью известного сигнала
- •3. 7. Обнаружение сигнала со случайной начальной фазой
- •3. 8. Обнаружение сигнала со случайными амплитудой и начальной фазой
- •3. 9. Обнаружение объектов, распределенных в заданном объеме
- •3. 10. Корреляционные обнаружители сигналов со случайным временем прихода
- •3. 11. Особенности обнаружения изменений параметров сигнала
- •4. Обнаружение протяженных объектов
- •4. 1. Постановка задачи
- •4. 2. Обнаружение пачки некоррелированных импульсов
- •4. 3. Обнаружение сигналов с двоичным накоплением
- •4. 4. Последовательный обнаружитель
- •4. 5. Обнаружение коррелированных сигналов
- •4. 6. Достоверность результатов обнаружения
- •Список литературы
- •Редактор а. В. Крейцер
- •197376, С.-Петербург, ул. Проф. Попова, 5.
3. 11. Особенности обнаружения изменений параметров сигнала
Статистическая теория обнаружения сигналов на фоне помех была первоначально разработана для целей поиска малых сигналов в радиолокации, а впоследствии полученные результаты были распространены на задачи гидролокации, эхо-импульсной дефектоскопии и т. д. Во всех этих областях имеется сходство в формулировке задачи: с некоторой вероятностью, зачастую априорно неизвестной, появляется полезный сигнал, который и нужно обнаружить на фоне различного рода помех. Основные идеи теории обнаружения могут быть распространены и на задачи просвечивания: теневой метод дефектоскопии, медицинского рентгеновского просвечивания и т. п. Особенностью методов просвечивания является то, что сигнал имеется и в отсутствие интересующих нас объектов в контролируемой среде. Наличие выявляемого объекта изменяет те или иные параметры сигнала (чаще всего амплитуду и время прихода) ([10], [11]). Параметры эти могут изменяться и под влиянием каких-то мешающих воздействий. При этом необходимо выявить только те изменения информативного параметра, которые вызваны наличием объекта. Этот подход может быть распространен и на все ситуации, когда сигнал, приходящий на фоне помех, присутствует постоянно, и нам необходимо обнаруживать изменения тех или иных его параметров, вызванные какими-то внешними воздействиями.
Рассмотрим
задачу более подробно на примере теневого
амплитудного дефектоскопа. Наличие
дефекта в контролируемом изделии
приводит к изменению амплитуды
принимаемого сигнала. В ультразвуковых
дефектоскопах амплитуда принимаемого
сигнала на дефектных участках практически
всегда уменьшается, в радиационных
дефектоскопах дефект может как увеличивать
уровень принимаемого сигнала (дефект
– включения из материалов более легких,
чем материал изделия), так и уменьшать
его (дефект – включения из материалов
более тяжелых, чем материал изделия).
Рис. 3.13
Пусть металлическое изделие 4, погруженное в жидкость 3 (рис. 3.13), контролируется теневым ультразвуковым дефектоскопом. Из-за небольших изменений затухания ультразвуковых колебаний в материале изделия, рассеяния их на неровностях поверхностей изделия и ослабления из-за остаточных загрязнений и ряда других причин амплитуда прошедшего ультразвукового сигнала при перемещении излучающего 1 и приемного 2 преобразователей вдоль поверхности изделия все время флуктуирует. Закон распределения амплитуд U прошедших сигналов на бездефектном участке изделия может быть описан плотностью распределения вероятностей p(U). Наличие протяженного звукопрозрачного дефекта 5 с акустической прозрачностью T (T < 1) соответственно изменит в T раз амплитуды всех сигналов на этом участке. Плотность распределения вероятностей амплитуд преобразуется в pT(U), как показано на рис. 3.14.
При этом вид закона распределения останется прежним, а математическое ожидание и среднеквадратическое отклонение изменятся в T раз.
При контроле амплитуда прошедшего сигнала сравнивается с порогом U0 . Если она меньше порога, принимается решение о наличии дефекта, если больше – о его отсутствии. Таким образом, порядок принятия решения здесь обратен тому, который был описан ранее.
Рис. 3.14
При этом условные вероятности равны:
–
ложная тревога, (3.24)
– пропуск цели, (3.25)
– правильное обнаружение. (3.26)
Если известен закон распределения, то из формул (3.24)–(3.26) можно получить конкретные соотношения, позволяющие связать значения рабочего порога с характеристиками флуктуаций и надежностью контроля. Некоторые результаты расчетов изложены в [12].
Если по условиям задачи отслеживаемое изменение параметра исследуемого объекта или явления вызывает не уменьшение, а увеличение амплитуды сигнала, то пределы интегрирования в формулах (3.24)–(3.26) соответственно изменятся.