- •Введение
- •1. Фильтрация сигналов на фоне помех
- •1.1. Постановка задачи фильтрации
- •1.2. Оптимальные фильтры устройств обнаружения
- •1.3. Согласованные фильтры
- •1.4. Согласованный фильтр и корреляционный приемник
- •1. 5. Физически возможные фильтры. Квазиоптимальные фильтры
- •1.6. Синтез оптимальных фильтров
- •1.6.1. Синтез согласованного фильтра для прямоугольного видеоимпульса
- •1.6.2. Синтез оптимального фильтра для приема прямоугольного импульса на фоне коррелированного шума
- •1.6.3. Синтез фильтров, согласованных с радиоимпульсом
- •0 Вне интервала .
- •1. 7. Фильтрация сигнала на фоне реверберационной помехи
- •1.8. Оптимальная фильтрация сигналов по критерию минимума среднеквадратической ошибки (сглаживающие и прогнозирующие фильтры)
- •2. Основы теории обнаружения сигналов на фоне помех
- •2. 1. Постановка задачи
- •2.2. Метод статистических решений
- •2. 3. Возможные решения при обнаружении сигнала
- •2.4. Критерии оптимального обнаружения
- •2.5. Простейший обнаружитель Неймана-Пирсона
- •2.6. Бинарное обнаружение полностью известного сигнала
- •2.7. Обнаружение сигнала со случайной начальной фазой
- •2.8. Обнаружение сигнала со случайными амплитудой и начальной фазой
- •2.9. Обнаружение объектов, распределенных в заданном объеме
- •2.10. Корреляционные обнаружители сигналов со случайным временем прихода
- •2.11. Особенности обнаружения изменений параметров сигнала
- •3. Обнаружение протяженных объектов
- •3. 1. Постановка задачи
- •3.2. Обнаружение пачки некоррелированных импульсов
- •3.3. Обнаружение сигналов с двоичным накоплением
- •3.4. Последовательный обнаружитель
- •3.5. Обнаружение коррелированных сигналов
- •3.6. Достоверность результатов обнаружения
- •Список литературы
- •Оглавление
- •Редактор а. В. Крейцер
- •197376, С.-Петербург, ул. Проф. Попова, 5.
1.4. Согласованный фильтр и корреляционный приемник
Пусть на вход согласованного фильтра воздействует принятое колебание x(t)= s(t,0) + n(t). Тогда сигнал на выходе согласованного фильтра можно представить в виде
. (1.12)
Интеграл в этом выражении носит наименование корреляционного интеграла. Действительно, с точностью до постоянного множителя он представляет собой взаимную ковариационную функцию принятого колебания x(t) и копии полезного сигнала s(t,l).
Выражение (1.12) можно записать также в виде
,
где
(1.13а)
– сигнальная функция;
(1.13б)
– шумовая функция.
Из соотношений (1.12) и (1.13а) следует, что полезный сигнал sв(t) на выходе согласованного фильтра с точностью до постоянного размерного множителя k равен ковариационной функции входного полезного сигнала
,
взятой от аргумента t –- t0 :
sв(t) = kK(t – t0), sв max(t0) = kEs . (1.14)
Следует также помнить, что в большинстве случаев фильтрации подвергаются высокочастотные сигналы (радиосигналы), у которых среднее значение равно нулю, и в этом случае ковариационная функция совпадает с корреляционной:
K(t) = R(t).
Таким образом, согласованный фильтр в принципе выполняет ту же операцию, что и корреляционный приемник; в этом смысле они эквивалентны. Вопрос о применении корреляционного приемника или согласованного фильтра в каждом конкретном случае решается в зависимости от простоты технической реализации. Следует отметить, что при одном и том же входном сигнале s(t,) характер сигнальной и шумовой функций на выходе корреляционного приемника и согласованного фильтра различен. Отличие в вычислении корреляционного интеграла корреляционным приемником и согласованным фильтром заключается в том, что коррелятор определяет единственную точку ковариационной функции сигнала, а именно максимальную точку, а согласованный фильтр вычисляет ковариационную функцию сигнала полностью.
Дисперсия шума на выходе согласованного фильтра может быть определена через выходной шум, равный на основании (1.12) и (1.13б):
nв(t)q0n(t).
Тогда корреляционная функция шума
Но есть корреляционная функция белого шума:
.
Тогда в силу фильтрующего свойства d-функции интеграл отличен от нуля лишь при u1 = u2 = u и двойной интеграл переходит в однократный:
,
или, вводя замену t0 – t1 + u = t,
. (1.15)
Из формулы (1.15) видно, что корреляционная функция выходного шума имеет вид корреляционной функции входного сигнала. Тогда дисперсия выходного шума
Dв=. (1.16)
Из формул (1.14) и (1.16) находим отношение наибольшего значения выходного сигнала к среднеквадратическому значению выходного шума:
, (1.17)
где q – отношение сигнал/помеха по амплитуде.
1. 5. Физически возможные фильтры. Квазиоптимальные фильтры
При практическом построении оптимальных и согласованных линейных фильтров кроме найденных соотношений надо также учитывать условия физической возможности и практической реализуемости фильтров. Условие физической возможности фильтра записывается в виде [6]:
h(t) = 0 при t 0;
Если сигнал s(t), с которым должен быть согласован фильтр, начинается в момент времени t0 и полностью прекращается при t ³ t0+tи, то первое из условий выполняется при t0 ³ t0+tи. Только при этом условии будет использована вся энергия сигнала для формирования сигнального пика на выходе фильтра в момент t0. Увеличение t0 сверх t0 + tи, не влияя на значение пика, сдвигает его в сторону большего запаздывания, что обычно нежелательно. Поэтому следует брать t0 = t0+tи, т. е. момент наблюдения должен совпадать с окончанием входного сигнала. Иногда для аппроксимации реальных импульсных сигналов используют бесконечно длинные импульсы (гауссовский, экспоненциальный и т. д.). Тогда приходится искусственно выбирать конечное значение длительности аппроксимирующего сигнала, содержащей основную долю энергии реального сигнала.
Не всякий физически возможный фильтр можно реализовать практически, т. е. построить из сравнительно небольшого числа элементов, обладающих легко выполнимыми характеристиками. В этом случае нужно либо выбирать такие сигналы, для которых получаются легко реализуемые фильтры, либо использовать практически осуществимые фильтры, отношение сигнал/помеха на выходе которых лишь немного меньше значения, определяемого соотношением (1.17). Такие фильтры называются квазиоптимальными.
Обозначим через отношение значения сигнал / помеха на выходе произвольного линейного фильтра к значению сигнал / помеха на выходе согласованного фильтра. Используя выражение (1.6) и заменяя Sn() на N0 / 2 (для белого шума), получаем
.
В таблице приведены максимальные значения rmax для различных форм полезных радиоимпульсных сигналов и разных видов частотных
Радиоимпульс |
Вид АЧХ фильтра |
rmax |
a |
Прямоугольный Гауссовский Прямоугольный Гауссовский Прямоугольный То же - “ - |
Идеально прямоугольная Идеально прямоугольная Гауссовская То же Одиночный резонансный контур 2 несвязанных резонансных контура 5 несвязанных резонансных контуров |
0,91 0,94 0,94 1,00 0,90 0,93 0,94 |
1,37 0,72 0,72 0,63 0,40 0,61 0,67 |
характеристик реализуемых фильтров при наилучших значениях их полос пропускания. При этом полоса выбирается из условия Df·tи = a, Df – ширина полосы пропускания на уровне 0,5 по мощности, и – эффективная длительность импульса.
Видно, что уменьшение отношения сигнал/помеха при замене оптимального фильтра квазиоптимальным можно сделать весьма небольшим.
При проектировании квазиоптимальных фильтров задаются структурой фильтра исходя из конструктивных соображений, а полосу его пропускания на уровне 0,707 от максимума определяют, максимизируя величину при изменении полосы пропускания. Квазиоптимальные фильтры для радиоимпульсных и вообще для высокочастотных сигналов выполняются на базе колебательных контуров или активных полосовых фильтров. Число контуров обычно задается из конструктивных соображений. Полосу пропускания оптимизируют, изменяя добротность колебательной системы.
На практике часто приходится работать с сигналами, имеющими случайную амплитуду и фазу. Как следует из (1.8) и (1.9), форма частотной характеристики не зависит от амплитуды. Поэтому для сигнала со случайной амплитудой можно использовать тот же фильтр, что и для сигнала с детерминированной амплитудой. Фазочастотная характеристика фильтра зависит от фазы сигнала. Однако при непрерывном случайном изменении фазы сигнала мы в подавляющем большинстве не имеем возможности перестраивать фильтр. Поэтому случайная фаза сигнала при проектировании фильтра принимается равной своему среднему значению, что несколько снижает отношение сигнал/помеха на выходе.