
- •Предисловие
- •Введение
- •Турбореактивный одноконтурный двигатель (трд)
- •Турбореактивный двигатель с форсажом (трдф)
- •Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- •Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- •Двигатели непрямой реакции
- •Турбовальные двигатели (тВаД)
- •Турбовинтовые двигатели (твд)
- •Часть 1. Основы теории элементов авиационных гтд
- •1.1. Уравнение неразрывности
- •1.2. Уравнение сохранения энергии
- •1.3. Уравнение первого закона термодинамики
- •1.4. Обобщенное уравнение бернулли
- •1.5. Теорема эйлера об изменении количества движения
- •Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- •2.1. Двигатель и силовая установка
- •2.2. Тяга реактивного двигателя
- •2.3. Эффективная тяга силовой установки
- •2.4. Внешнее сопротивление силовой установки и его составляющие
- •2.5. Удельные параметры авиационных гтд
- •Удельные параметры гтд прямой реакции
- •Удельные параметры гтд непрямой реакции
- •Глава 3 теория ступени компрессора гтд
- •3.1. Назначение компрессоров гтд, их типы
- •И основные требования к ним
- •3.2. Схема и принцип действия ступени осевого компрессора
- •3.3. Работа, затрачиваемая на вращение колеса ступени
- •3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- •3.5. Основные параметры ступени компрессора
- •Геометрические параметры
- •Газодинамические и кинематические параметры
- •1. Степень повышения давления в ступени
- •2. Адиабатная работа сжатия воздуха в ступени
- •3. Кпд ступени
- •5. Числа Маха на входе в рк и на.
- •6. Коэффициент расхода
- •7. Коэффициент адиабатного напора
- •8. Степень реактивности ступени.
- •3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- •3.7. Профилирование ступеней по закону постоянства циркуляции
- •3.8. Параметры и характеристики компрессорных решеток профилей
- •Параметры профиля и решетки профилей
- •Характеристики решеток профилей
- •Влияние чисел м и Re на характеристики компрессорных решеток
- •3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- •3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- •3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- •3.12. Схема и особенности работы центробежной ступени компрессора
- •3.13. Работа вращения колеса и основные параметры центробежной ступени
- •Глава 4
- •4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- •4.2. Формы проточной части осевого компрессора (каскада)
- •4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- •Глава 5 характеристики компрессоров и их регулирование
- •5.1. Общие представления о характеристиках компрессоров и методах их определения
- •5.2. Применение теории подобия к построению характеристик компрессора
- •5.3. Характеристики ступени осевого компрессора
- •5.4. Срывные режимы работы ступени
- •5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- •Граница устойчивой работы многоступенчатого компрессора
- •5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- •5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- •5.8.Задачи и способы регулирования компрессоров гтд
- •Перепуск воздуха
- •Поворот лопаток направляющих аппаратов
- •Разделение компрессора на каскады (группы ступеней)
- •Глава 6 газовые турбины гтд
- •6.1. Назначение турбин гтд и основные
- •Требования к ним
- •6.2. Схема и принцип работы ступени турбины
- •6.3. Работа газа на окружности колеса ступени
- •6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- •6.5. Основные параметры ступени турбины Геометрические параметры
- •Газодинамические параметры
- •Кинематические параметры
- •6.6. Потери в ступени турбины и их зависимость от различных факторов
- •Потери в ступени турбины
- •Влияние параметра u /c1 на кпд ступени
- •6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- •6.8. Способы представления характеристик ступени газовой турбины
- •6.9.Характеристики ступени турбины
- •Характеристики ступени турбины
- •Глава 7 камеры сгорания гтд
- •7.1. Назначение камер сгорания и основные
- •Требования к ним
- •7.2. Основные параметры камер сгорания гтд
- •7.3. Основные закономерности процесса горения топлива
- •7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- •7.5. Характеристики камер сгорания авиационных гтд
- •7.6. Потери полного давления в камерах сгорания гтд
- •7.7. Определение расхода топлива в камерах сгорания
- •7.8. Назначение камер смешения и основные требования к ним
- •7.9. Схемы камер смешения и картина течения в них
- •7.10. Расчет параметров потока за камерой смешения
- •Глава 8 входные и выходные устройства авиационных силовых установок
- •8.1.Типы входных устройств и их классификация
- •8.2. Основные параметры входных устройств
- •8.3. Особенности дозвуковых ходных устройств
- •8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- •8.5. Назначение выходных устройств и предъявляемые к ним требования
- •8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- •Скорость истечения газа из суживающегося сопла и режимы его работы
- •8.7. Потери в выходных устройствах и способы их оценки
- •8.8.Устройства реверса тяги
- •Турбовальных гтд вертолетов
- •Часть 2. Термодинамический цикл, совместная
- •1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- •Зависимость работы и внутреннего кпд цикла
- •Оптимальная степень повышения давления в компрессоре
- •Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- •1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- •1.5. Полный кпд гтд прямой реакции
- •1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- •1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- •1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- •1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- •Зависимость Руд и Судот π для одноконтурных двигателей
- •Зависимость Руд и Суд от π для двухконтурных двигателей
- •1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- •Зависимость Руд и СудотΔ для двухконтурных двигателей
- •Совместная работа элементов одновальных газогенераторов
- •2.1. Функциональные модули авиационных силовых становок
- •2.2. Управляемые параметры и управляющие факторы
- •2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- •2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- •2.5. Критериальные характеристики одновальных газогенераторов
- •2.6. Программы управления одновальных гг и
- •Одновальных трд, управляемых по одному параметру
- •Рассогласование ступеней компрессора в одновальном гг
- •(И одновальном трд)
- •Программы управдения одновальных гг и одновальных трд
- •Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- •3.1. Совместная работа элементов трдДсм
- •3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- •3.3. Формирование программ управления трддсм
- •Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- •4.1. Скоростные характеристики трд
- •4.2. Высотные характеристики трд
- •4.3. Дроссельные характеристики трд
- •Характеристики двухконтурных трд (трдд)
- •4.4. Скоростные характеристики трдд
- •4.5. Высотные характеристики трдд
- •4.6. Высотно-скоростные характеристики трдд
- •4.7. Дроссельные характеристики трдд
- •Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- •5.1. Удельные параметры тВаД и их зависимость от
- •Параметров рабочего процесса
- •5.2. Области применения и особенности термодинамического цикла тВаД
- •5.3. Совместная работа элементов турбовальных двигателей
- •5.4. Особенности регулирования вертолетных турбовальных двигателей
- •5.5. Программы управления вертолетных гтд на режимах ограничения
- •5.6. Высотные характеристики турбовальных двигателей
- •5.7. Дроссельные характеристики турбовальных двигателей
- •5.8. Климатические характеристики турбовальных двигателей
- •5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- •5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- •5.11. Совместная работа элементов и программы управления твд
- •5.12. Эксплуатационные характеристики твд и тввд
- •5.13. Области применения тввд и перспективы их развития
- •Глава 6 неустановившиеся режимы работы авиационных гтд
- •6.1. Требования к динамическим характеристикам гтд
- •6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- •6.3. Уравнения динамики роторов гтд
- •6.4. Факторы, влияющие на избыточную мощность турбины
- •6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- •6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- •6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- •6.8. Запуск гтд на земле
- •6.9. Запуск гтд в полете
- •Литература
- •Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- •Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- •Глава 3. Теория ступени компрессора гтд
- •Глава 4. Многоступенчатые компрессоры
- •Глава 5. Характеристики компрессоров и их регулирование
- •Глава 6. Газовые турбины гтд
- •Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- •Глава 8. Входные и выходные устройства авиационных силовых установок
- •Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- •Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- •Глава 2. Совместная работа элементов одновальных газогенераторов
- •Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- •Глава 4. Характеристики одноконтурных и двухконтурных трд
- •Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- •Глава 6. Неустановившиеся режимы работы авиационных гтд
Турбовальных гтд вертолетов
Рис.
8.14.Схема
выходного
патрубка
вертолетного ГТД
При этом отвод газов из-за турбины производится не в сторону, противоположную направлению полёта, а вверх или вбок, так как за силовой установкой располагается хвостовая часть фюзеляжа, омывание которой потоком горячих газов нежелательно. Поэтому выходной патрубок вертолётного ГТД имеет форму криволинейного канала, подобного показанному на рис. 8.14. Боковая составляющая силы реакции компрессируется тем, что выходные патрубки двух устанавливаемых на вертолет двигателей изогнуты в противоположные (по отношению к продольной оси вертолёта) стороны.
При этом в целях максимального использования работы расширения газа для получения работы на валу турбин, скорость газа на выходе из криволинейного канала выбирается возможно малой, обычно меньшей, чем за свободной турбиной.
Сильная искривленность
канала такого выходного устройства
приводит к появлению значительных
гидравлических потерь. Их учет в расчетах
ТВаД может быть выполнен либо по
коэффициенту восстановления полного
давления
,
либо по коэффициенту скорости
,
где
, причем
,р*т– полное давление за
свободной турбиной, ар*с–
полное давление на выходе из выходного
патрубка.
Обычно на расчетном режиме для выходных устройств ТВаД
и
.
Часть 2. Термодинамический цикл, совместная
РАБОТА ЭЛЕМЕНТОВ И ХАРАКТЕРИСТИКИ АВИАЦИОННЫХ СИЛОВЫХ УСТАНОВОК
Глава 1
ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ РАБОЧЕГО
ПРОЦЕССА ГТД ПРЯМОЙ РЕАКЦИИ
1.1. РЕАЛЬНЫЙ ЦИКЛ ГТД
Во всех газотурбинных двигателях осуществляется однотипный термодинамический цикл цикл Брайтона с подводом теплоты при практически постоянном давлении.
В этой главе рассматривается влияние параметров рабочего процесса на удельные параметры ГТД прямой реакции различных схем в предположении, что параметры процесса могут изменяться независимо друг от друга, что обычно соответствует условиям проектирования двигателя. В выполненном двигателе, как будет показано ниже, параметры рабочего процесса являются взаимно связанными, что должно специально учитываться.
Рис.
1.1. Сравнение реального
и
идеального циклов ГТД
Гидравлическими потерями называется работа газа, затрачиваемая на преодоление гидравлического сопротивления при его движении. Гидросопротивление обусловлено наличием:
сопротивления трения;
вихреобразования;
волнового сопротивления.
Поэтому процессы сжатия и расширения в реальном цикле являются не адиабатными, а политропными. Кроме того, в процессе подвода к воздуху теплоты в камере сгорания изменяется состав рабочего тела (образуется смесь воздуха и продуктов сгорания топлива), а также увеличивается его массовый расход на величину расхода топлива. В процессе подвода теплоты в камере сгорания увеличивается скорость газа и, следовательно, снижается давление в ней в отличие от идеального цикла, в котором подвод теплоты осуществляется при постоянном давлении.
На рис.1.1 представлено сравнение реального и идеального циклов ГТДпри условии, что параметры циклов π и Δ одинаковы.
|
|
|
Рис. 1.2. Одноконтурный ТРД |
|
Рис. 1.3. Двухконтурный ТРД |
Функции воздуха, участвующего в рабочем процессе ГТД различных схем, различаются. Так, в ГТД прямой реакции (ТРД и ТРДД, рис. 1.2 и 1.3) воздух выполняет три функции. Во-первых, он служит основным компонентом рабочего тела цикла, в результате осуществления которого происходит преобразование тепловой энергии в механическую. Часть этой энергии в виде работы на валу турбины используется для привода во вращение роторов компрессора, а также агрегатов двигателя и самолета. Во-вторых, оставшаяся после расширения в турбине энергия газа (смеси воздуха и продуктов сгорания топлива) расходуется на его ускорение, за счет чего создается тяга. В-третьих, кислород воздуха используется для окисления топлива в процессе преобразования его химической энергии в тепловую.
В ТВД, ТВВД и ТВаД (рис. 1.4 и рис. 1.5) воздух, участвующий в рабочем процессе, выполняет только две функции: является основным компонентом рабочего тела цикла и служит для окисления топлива за счет находящегося в нем кислорода. Третью функцию по созданию реактивной тяги он выполняет лишь частично в ТВД и ТВВД. Движителем силовых установок с двигателями этих типов является винт, который создает основную величину тяги.
|
|
Рис. 1.4. Турбовинтовой двигатель |
Рис. 1.5. Турбовальный ГТД |
Рис.
1.6. Цикл газотурбинного двигателя в р-υ
и Т-s
- координатах
Площадь левее линии общего процесса сжатия Н-В-К эквивалентна политропной работе сжатия Lп.с.
Так как в процессе подвода теплоты в камере сгорания давление газа падает, то процесс К-Г-Т-С будем называть общим процессом расширения, а площадь левее линии этого процесса – политропной работой расширения Lп.р.
Отличие циклов двигателей различных схем состоит в различном положении точки Т, характеризующей давление газов за турбиной. В цикле одноконтурного двигателя точка Т расположена выше всех (рис.1.6 а), т.к. в нем работа турбины расходуется лишь для привода во вращение компрессора и агрегатов двигателя и самолета, хотя доля мощности, затрачиваемая на привод этих агрегатов, пренебрежимо мала.
В цикле двухконтурного двигателя точка Т' расположена ниже, чем точка Т в ТРД, т.к. в этом двигателе работа турбины, кроме привода компрессора внутреннего контура, используется еще и для привода во вращение вентилятора. Поэтому для получения большей работы в турбине этого двигателя газ расширяется в ней до более низкого давления, чем в ТРД.
Основной функцией ТВД (рис.1.4) является создание работы на валу турбины с целью передачи ее на винт для создания тяги. В силовых установках с этими двигателями за счет реакции струи создается лишь примерно 8…12% тяги. Поэтому в турбине ТВД происходит еще более глубокое расширение газов, чем в турбине ТРДД (точка Т'' на рис. 1.6а).
Наконец, задачей турбовального двигателя (рис.1.5) является создание мощности на валу турбины для передачи ее нанесущий и рулевой винты. За счет реакции струи тяга у этих двигателей не создается. Поэтому в турбине ТВаД происходит практически полное расширение газов до давления, близкого к атмосферному, а иногда и ниже атмосферного. Поэтому точка Т''' на рис. 1.6 а почти совпадает с точкой С.
Работой реального циклагазотурбинного двигателя называется величина
Lц= (Lп.р–Lп.с) – (L r р+Lrс) = (Lп.р–Lrр) – (Lп.с+Lrс).
Таким образом, работа реального цикла в отличие от идеального не эквивалентна площади цикла, а меньше ее на величину суммарных гидравлических потерь Lrс в общем процессе сжатия и Lrр в общем процессе расширения. Выше было отмечено, что работа воздуха и газа, расходуемая на преодоление сил гидравлических сопротивлений, полностью преобразуется в теплоту трения, т.е. Lr с= Qrси Lrр= Qrр.
Для учета этих потерь введем в рассмотрение понятие коэффициента полезного действия общего процесса сжатия ηси коэффициента полезного действия общего процесса расширения ηр.
Кроме того, примем следующие допущения:
Вместо статического давления за компрессором будем рассматривать давление заторможенного потока, т.к. при малой скорости за компрессором они отличаются незначительно;
Гидравлические потери в камере сгорания отнесем к общему процессу расширения;
Также будем считать, что расширение газа в сопле двигателя полное, т.е. рс=рН.
С учетом принятых допущений, как и в идеальном цикле, введем два параметра цикла: π = р*к /рН– степень повышения давления в цикле и Δ=Т*г/ТН – степень подогрева воздуха в цикле.
Коэффициентом полезного действия общего процесса сжатия будем называть отношение адиабатной работы общего процесса сжатия к сумме политропной работы и гидравлических потерь в этом же процессе, т.е.
,
где
,
а
.
Этот КПД учитывает гидравлические потери во входном устройстве и компрессоре.
Коэффициентом полезного действия общего процесса расширения будем называть отношение политропной работы всего процесса расширения за вычетом потерь в этом же процессе к адиабатной работе процесса расширения, т.е.
,
где
.
Так как в идеальном процессе подвода теплоты в камере сгорания потери отсутствуют, то р*г =р*к. Кроме того, при полном расширении газа в сопле рс=рН, тогда
.
КПД ηручитывает гидравлические потери в процессе расширения, т.е. потери в турбине, сопле, а также в камере сгорания.
Выразим теперь работу цикла через параметры цикла и КПД ηси ηр.
.
Введем в рассмотрение коэффициент
,
учитывающий
различие физических свойств воздуха и
продуктов сгорания. Он зависит от трех
величин: π, Т*г
и ТН,
т.к. от этих величин зависят теплоемкости
ср
и
.
Для практически возможных значений π,Т*г
и ТН
приближенно
можно считать, что
=1,03…1,06.
Кроме того, учтем,
что
.
Тогда окончательно получим
.
(1.1)
Как видно, в отличие от идеального цикла, работа реального цикла ГТД зависит не только от параметров рабочего процесса π и Δ, но и от коэффициентов полезного действия ηси ηр, учитывающих гидравлические потери в общих процессах сжатия и расширения. Кроме того, работа цикла зависит от температуры атмосферного воздухаТН, которая может изменяться при изменении высоты полета и атмосферных условий.
Формула для работы цикла (1.1) справедлива для ГТД различных типов (ТРД, ТРДД, ТВД, ТВаД и др.), у которых рабочий цикл аналогичный, описанному выше.
В приближенных расчетах можно считать, что ηс= const и ηр= const, т.к. у ГТД в стендовых условиях и в полете с дозвуковыми и небольшими сверхзвуковыми скоростями КПД общего процесса сжатия близок к КПД компрессора (т.е. ηс= 0,83…0,85), а КПД процесса расширения близок к КПД турбины (т.е. ηр= 0,9…0,92).