
- •Предисловие
- •Введение
- •Турбореактивный одноконтурный двигатель (трд)
- •Турбореактивный двигатель с форсажом (трдф)
- •Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- •Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- •Двигатели непрямой реакции
- •Турбовальные двигатели (тВаД)
- •Турбовинтовые двигатели (твд)
- •Часть 1. Основы теории элементов авиационных гтд
- •1.1. Уравнение неразрывности
- •1.2. Уравнение сохранения энергии
- •1.3. Уравнение первого закона термодинамики
- •1.4. Обобщенное уравнение бернулли
- •1.5. Теорема эйлера об изменении количества движения
- •Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- •2.1. Двигатель и силовая установка
- •2.2. Тяга реактивного двигателя
- •2.3. Эффективная тяга силовой установки
- •2.4. Внешнее сопротивление силовой установки и его составляющие
- •2.5. Удельные параметры авиационных гтд
- •Удельные параметры гтд прямой реакции
- •Удельные параметры гтд непрямой реакции
- •Глава 3 теория ступени компрессора гтд
- •3.1. Назначение компрессоров гтд, их типы
- •И основные требования к ним
- •3.2. Схема и принцип действия ступени осевого компрессора
- •3.3. Работа, затрачиваемая на вращение колеса ступени
- •3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- •3.5. Основные параметры ступени компрессора
- •Геометрические параметры
- •Газодинамические и кинематические параметры
- •1. Степень повышения давления в ступени
- •2. Адиабатная работа сжатия воздуха в ступени
- •3. Кпд ступени
- •5. Числа Маха на входе в рк и на.
- •6. Коэффициент расхода
- •7. Коэффициент адиабатного напора
- •8. Степень реактивности ступени.
- •3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- •3.7. Профилирование ступеней по закону постоянства циркуляции
- •3.8. Параметры и характеристики компрессорных решеток профилей
- •Параметры профиля и решетки профилей
- •Характеристики решеток профилей
- •Влияние чисел м и Re на характеристики компрессорных решеток
- •3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- •3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- •3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- •3.12. Схема и особенности работы центробежной ступени компрессора
- •3.13. Работа вращения колеса и основные параметры центробежной ступени
- •Глава 4
- •4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- •4.2. Формы проточной части осевого компрессора (каскада)
- •4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- •Глава 5 характеристики компрессоров и их регулирование
- •5.1. Общие представления о характеристиках компрессоров и методах их определения
- •5.2. Применение теории подобия к построению характеристик компрессора
- •5.3. Характеристики ступени осевого компрессора
- •5.4. Срывные режимы работы ступени
- •5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- •Граница устойчивой работы многоступенчатого компрессора
- •5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- •5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- •5.8.Задачи и способы регулирования компрессоров гтд
- •Перепуск воздуха
- •Поворот лопаток направляющих аппаратов
- •Разделение компрессора на каскады (группы ступеней)
- •Глава 6 газовые турбины гтд
- •6.1. Назначение турбин гтд и основные
- •Требования к ним
- •6.2. Схема и принцип работы ступени турбины
- •6.3. Работа газа на окружности колеса ступени
- •6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- •6.5. Основные параметры ступени турбины Геометрические параметры
- •Газодинамические параметры
- •Кинематические параметры
- •6.6. Потери в ступени турбины и их зависимость от различных факторов
- •Потери в ступени турбины
- •Влияние параметра u /c1 на кпд ступени
- •6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- •6.8. Способы представления характеристик ступени газовой турбины
- •6.9.Характеристики ступени турбины
- •Характеристики ступени турбины
- •Глава 7 камеры сгорания гтд
- •7.1. Назначение камер сгорания и основные
- •Требования к ним
- •7.2. Основные параметры камер сгорания гтд
- •7.3. Основные закономерности процесса горения топлива
- •7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- •7.5. Характеристики камер сгорания авиационных гтд
- •7.6. Потери полного давления в камерах сгорания гтд
- •7.7. Определение расхода топлива в камерах сгорания
- •7.8. Назначение камер смешения и основные требования к ним
- •7.9. Схемы камер смешения и картина течения в них
- •7.10. Расчет параметров потока за камерой смешения
- •Глава 8 входные и выходные устройства авиационных силовых установок
- •8.1.Типы входных устройств и их классификация
- •8.2. Основные параметры входных устройств
- •8.3. Особенности дозвуковых ходных устройств
- •8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- •8.5. Назначение выходных устройств и предъявляемые к ним требования
- •8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- •Скорость истечения газа из суживающегося сопла и режимы его работы
- •8.7. Потери в выходных устройствах и способы их оценки
- •8.8.Устройства реверса тяги
- •Турбовальных гтд вертолетов
- •Часть 2. Термодинамический цикл, совместная
- •1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- •Зависимость работы и внутреннего кпд цикла
- •Оптимальная степень повышения давления в компрессоре
- •Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- •1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- •1.5. Полный кпд гтд прямой реакции
- •1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- •1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- •1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- •1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- •Зависимость Руд и Судот π для одноконтурных двигателей
- •Зависимость Руд и Суд от π для двухконтурных двигателей
- •1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- •Зависимость Руд и СудотΔ для двухконтурных двигателей
- •Совместная работа элементов одновальных газогенераторов
- •2.1. Функциональные модули авиационных силовых становок
- •2.2. Управляемые параметры и управляющие факторы
- •2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- •2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- •2.5. Критериальные характеристики одновальных газогенераторов
- •2.6. Программы управления одновальных гг и
- •Одновальных трд, управляемых по одному параметру
- •Рассогласование ступеней компрессора в одновальном гг
- •(И одновальном трд)
- •Программы управдения одновальных гг и одновальных трд
- •Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- •3.1. Совместная работа элементов трдДсм
- •3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- •3.3. Формирование программ управления трддсм
- •Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- •4.1. Скоростные характеристики трд
- •4.2. Высотные характеристики трд
- •4.3. Дроссельные характеристики трд
- •Характеристики двухконтурных трд (трдд)
- •4.4. Скоростные характеристики трдд
- •4.5. Высотные характеристики трдд
- •4.6. Высотно-скоростные характеристики трдд
- •4.7. Дроссельные характеристики трдд
- •Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- •5.1. Удельные параметры тВаД и их зависимость от
- •Параметров рабочего процесса
- •5.2. Области применения и особенности термодинамического цикла тВаД
- •5.3. Совместная работа элементов турбовальных двигателей
- •5.4. Особенности регулирования вертолетных турбовальных двигателей
- •5.5. Программы управления вертолетных гтд на режимах ограничения
- •5.6. Высотные характеристики турбовальных двигателей
- •5.7. Дроссельные характеристики турбовальных двигателей
- •5.8. Климатические характеристики турбовальных двигателей
- •5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- •5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- •5.11. Совместная работа элементов и программы управления твд
- •5.12. Эксплуатационные характеристики твд и тввд
- •5.13. Области применения тввд и перспективы их развития
- •Глава 6 неустановившиеся режимы работы авиационных гтд
- •6.1. Требования к динамическим характеристикам гтд
- •6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- •6.3. Уравнения динамики роторов гтд
- •6.4. Факторы, влияющие на избыточную мощность турбины
- •6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- •6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- •6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- •6.8. Запуск гтд на земле
- •6.9. Запуск гтд в полете
- •Литература
- •Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- •Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- •Глава 3. Теория ступени компрессора гтд
- •Глава 4. Многоступенчатые компрессоры
- •Глава 5. Характеристики компрессоров и их регулирование
- •Глава 6. Газовые турбины гтд
- •Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- •Глава 8. Входные и выходные устройства авиационных силовых установок
- •Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- •Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- •Глава 2. Совместная работа элементов одновальных газогенераторов
- •Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- •Глава 4. Характеристики одноконтурных и двухконтурных трд
- •Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- •Глава 6. Неустановившиеся режимы работы авиационных гтд
3.8. Параметры и характеристики компрессорных решеток профилей
При проектировании ступени после определения формы расчетных треугольников скоростей на различных радиусах необходимо выбрать число и форму лопаток, которые обеспечили бы получение соответствующей структуры потока с малыми гидравлическими потерями, т.е. провести аэродинамический расчет ступени.
В настоящее время разрабатываются методы аэродинамического расчета ступеней компрессора, основанные на решении на ЭВМ задачи пространственного обтекания лопаточных венцов РК и НА вязким потоком с использованием уравнений движения вязкого газа. Но эти методы громоздки и пока ещё недостаточно отработаны.
В инженерной практике в основном используются методыаэродинамического расчета, основанные на результатах экспериментальногоисследования течения воздуха в компрессорных решетках профилей. При этом предполагается, что элементарные ступени, расположенные на различных радиусах, связаны друг с другом только условием радиального равновесия, и можно рассматривать течение через плоские решетки профилей, являющиеся разверткой осесимметричного течения, ("Гипотеза плоских сечений").
Параметры профиля и решетки профилей
Решетка профилей состоит из одинаковых профилей, расположенных в определенном порядке. Рассмотрим типичную форму профиля и компрессорной решетки профилей (рис. 3.10). Сначала рассмотрим профиль, из ряда которых составлена решетка (рис. 3.10, б).
Средней линиейпрофиля называется геометрическое место центров вписанных в профиль окружностей (на рисунке она показана штриховой линией).
Хорда профиля b –это длина прямой, соединяющей две самые удаленные друг от друга точки средней линии профиля.
Та часть контура профиля, которая расположена (по отношению к средней линии) с той же стороны, что и хорда, называется нижней поверхностью или корытцем, а противоположная часть – верхней поверхностью или спинкой профиля.
Угол
кривизныпрофиля
–
угол между касательными к средней линии,
проведенными в точках ее пересечения
с контуром профиля.
Толщина профиля (максимальная) с максимальный диаметр вписанной в профиль окружности.
Прогиб средней линии (максимальный) f – максимальное расстояние от текущей точки средней линии до хорды (по нормали к ней).
Кроме того, параметрами профиля являются также:
хс расстояние вдоль хорды до месторасположения максимальной толщины;
расстояние вдоль
хорды до месторасположения максимального
прогиба, а также их относительные
значения:
,
и
.
В
качестве средней линии профиля
используется обычно дуга круга или
какая-нибудь линия с плавно меняющейся
кривизной, например отрезок параболы.
По нормали к средней линии откладываются
ординаты профиля, в качестве которого
в дозвуковых ступенях используется
обычно один из симметричных (по отношению
к средней линии) профилей, рассчитанных
на работу при больших дозвуковых
скоростях потока. Решетки, применяемые
в дозвуковых компрессорах, составляются
обычно из профилей с
и
,
а передняя кромка у них имеет достаточно
большой радиус закругления, равный
10…15%c.
Рассмотрим далее решетку профилей (рис. 3.10, а). Она имеет следующие параметры.
Шаг решетки t – это расстояниемежду сходственными точками соседних профилей.
Рис. 3.10. Геометрические
параметры компрессорной решетки и ее
профиля
Конструктивные
(“лопаточные”) углы1ли2л
– углы между касательными к средней
линии и фронтом решетки у передней
(входной) и задней (выходной) кромок. При
этом2л
= 1л
+
.
Угол установки
профиля
угол между хордой профиля и фронтом
решетки.
“Горло” решетки
–
минимальный диаметр окружности, вписанной
в канал между соседними профилями. Имеет
значение также относительный размер
горла
.
Режим обтекания решетки характеризуется:
– углом атаки i (по передней кромке), равным1л –1;
– углом отставанияпотока (от направления задней кромки), равным2л –2;
– углом поворота
потока
.
Если канал между соседними лопатками («межлопаточный канал») получается расширяющимся от входа к выходу, то такая решетка называется диффузорной.
Угол поворота потока непосредственно связан с закруткой воздуха в решетке рабочего колесаwu. Если пренебречь изменением осевой составляющей скорости воздуха в рабочем колесе, то, как следует из треугольника скоростей,
.
(3.11)
Таким образом,
закрутка воздуха в колесе при данных
значениях углов 1и2пропорциональна
осевой скорости воздуха и, кроме того,
возрастает по мере увеличения.
Кроме того, режим обтекания решетки характеризуется гидравлическими потерями, возникающими из-за наличия вязкостного трения, вихреобразования (при отрыве потока) и возможного возникновения скачков уплотнения в потоке, обтекающем каждый профиль. Эти потери называются профильными, а их относительный уровень принято характеризовать коэффициентом потерь
.
(3.12)
Можно показать, что при малых скоростях набегающего на решетку потока
,
(3.13)
где
и
– полное и статическое давления воздуха
в набегающем потоке, а
осредненное (по
шагу) значение полного давления за
решеткой (для решетки РКв относительном движении).
При обработке экспериментальных данных формула (3.13) часто используется независимо от числа М в набегающем на решетку потоке.
Рассмотренные здесь и ниже параметры и соотношения записаны применительно к решеткам рабочего колеса ступени. Но все они могут быть (с небольшой коррекцией) отнесены и к решеткам направляющего аппарата.