
- •1 Элементы электрической цепи
- •2 Законы Ома, Кирхгофа. Идеальные источники эдс, тока.
- •3 Схемы замещения реальных источников электрической энергии. Баланс.
- •4Расчет электрических цепей методом упрощения схем
- •5 Эквивалентные преобразования схем. Последовательное и параллельное соединение элементов электрических цепей
- •6 Преобразование треугольника сопротивлений в эквивалентную звезду
- •7 Преобразование звезды сопротивлений в эквивалентный треугольник
- •8. Расчет электрических цепей постоянного тока с одним источником методом свертывания
- •9 Расчет электрических цепей постоянного тока с одним источником методом подобия или методом пропорциональных величин
- •10 Анализ сложных электрических цепей с несколькими источниками энергии. Метод непосредственного применения законов Кирхгофа
- •11. Анализ сложных электрических цепей с несколькими источниками энергии. Метод узловых потенциалов
- •12. Анализ сложных электрических цепей с несколькими источниками энергии. Метод двух узлов.
- •13. Анализ сложных электрических цепей с несколькими источниками энергии. Метод эквивалентного генератора.
- •14 Электрические цепи однофазного переменного тока. Основные определения
- •15 Изображения синусоидальных функций времени в векторной форме
- •16 Изображение синусоидальных функций временив комплексной форме
- •17 Сопротивление в цепи синусоидального тока
- •18 Индуктивная катушка в цепи синусоидального тока
- •19 Емкость в цепи синусоидального тока
- •20 Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
- •21 Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока
- •22 Резонансный режим в цепи, состоящей из параллельно включенных реальной индуктивной катушки и конденсатора
- •23 Мощность в цепи синусоидального тока
- •24 Баланс мощностей
- •26 Законы Ома и Кирхгофа в комплексной форме
- •Закон Ома
- •Первый закон Кирхгофа в комплексной форме
- •Второй закон Кирхгофа в комплексной форме
- •27 Выражение синусоидальных напряжений и токов с помощью комплексных чисел. Комплексные сопротивление и проводимость. Комплексная мощность.
- •28. Резонанс напряжений, условие и признаки, частотные характеристики
- •29. Понятие о режимах электрической цепи и ее элементов
- •30. Основные методы расчета сложных электрических цепей.
6 Преобразование треугольника сопротивлений в эквивалентную звезду
В
электротехнических и электронных
устройствах элементы цепи соединяются
по мостовой схеме. Сопротивления R12,
R13,
R24,
R34
включены в плечи моста, в диагональ 1–4
включен источник питания с ЭДС Е, другая
диагональ 3–4 называется измерительной
диагональю моста.
|
|
В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4. Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:
;
;
.
7 Преобразование звезды сопротивлений в эквивалентный треугольник
Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:
;
;
.
После проведенных преобразований можно определить величину эквивалентного сопротивления мостовой схемы
.
8. Расчет электрических цепей постоянного тока с одним источником методом свертывания
Этот метод применяется для не очень сложных пассивных электрических цепей, такие цепи встречаются довольно часто, и поэтому этот метод находит широкое применение. Основная идея метода состоит в том, что электрическая цепь последовательно преобразуется ("сворачивается") до одного эквивалентного элемента, и определяется входной ток. Затем осуществляется постепенное возвращение к исходной схеме ("разворачивание") с последовательным определением токов и напряжений.
Последовательность расчёта:
1. Расставляются условно–положительные направления токов и напряжений.
2. Поэтапно эквивалентно преобразуются участки цепи. При этом на каждом этапе во вновь полученной после преобразования схеме расставляются токи и напряжения в соответствии с п. 1.
3. В результате эквивалентного преобразования определяется величина эквивалентного сопротивления цепи.
4. Определяется входной ток цепи с помощью закона Ома.
5.
Поэтапно возвращаясь к исходной схеме,
последовательно находятся все токи и
напряжения.
Рассмотрим этот метод на примере. В исходной схеме расставляем условно–положительные направления токов в ветвях и напряжений на элементах. Нетрудно согласиться, что под действием источника E с указанной полярностью направление токов и напряжений такое, какое показано стрелками. Для удобства дальнейшего пояснения метода, обозначим на схеме узлы а и б. При обычном расчете это можно не делать.
Далее осуществляем последовательно эквивалентное преобразование схемы. Вначале объединяем параллельно соединенные элементы, и находим:
Затем, объединяя все последовательно соединенные элементы, завершаем эквивалентное преобразование схемы (рис. 1.15, в):
В последней схеме находим ток I1:
Теперь
возвращаемся к предыдущей схеме . Видим,
что найдCенный
ток I1
протекает через R1,
R2,3,
R4
и создает на них падение напряжения.
Найдем эти напряжения:.
Возвращаясь
к исходной схеме , видим, что найденное
напряжениеUаб
прикладывается к элементам R2
и R3.
Значит,
можем записать, чтоU2
= U3
= Uа,б
Токи в этих элементах находят из совершенно очевидных соотношений:
Итак, схема рассчитана.