Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка / 1_shpory_toe.docx
Скачиваний:
98
Добавлен:
26.01.2014
Размер:
437.48 Кб
Скачать

6 Преобразование треугольника сопротивлений в эквивалентную звезду

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме. Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4. Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ;.

7 Преобразование звезды сопротивлений в эквивалентный треугольник

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ;.

После проведенных преобразований можно определить величину эквивалентного сопротивления мостовой схемы

.

8. Расчет электрических цепей постоянного тока с одним источником методом свертывания

Этот метод применяется для не очень сложных пассивных электрических цепей, такие цепи встречаются довольно часто, и поэтому этот метод находит широкое применение. Основная идея метода состоит в том, что электрическая цепь последовательно преобразуется ("сворачивается") до одного эквивалентного элемента, и определяется входной ток. Затем осуществляется постепенное возвращение к исходной схеме ("разворачивание") с последовательным определением токов и напряжений.

Последовательность расчёта:

1. Расставляются условно–положительные направления токов и напряжений.

2. Поэтапно эквивалентно преобразуются участки цепи. При этом на каждом этапе во вновь полученной после преобразования схеме расставляются токи и напряжения в соответствии с п. 1.

3. В результате эквивалентного преобразования определяется величина эквивалентного сопротивления цепи.

4. Определяется входной ток цепи с помощью закона Ома.

5. Поэтапно возвращаясь к исходной схеме, последовательно находятся все токи и напряжения.

Рассмотрим этот метод на примере. В исходной схеме расставляем условно–положительные направления токов в ветвях и напряжений на элементах. Нетрудно согласиться, что под действием источника E с указанной полярностью направление токов и напряжений такое, какое показано стрелками. Для удобства дальнейшего пояснения метода, обозначим на схеме узлы а и б. При обычном расчете это можно не делать.

Далее осуществляем последовательно эквивалентное преобразование схемы. Вначале объединяем параллельно соединенные элементы, и находим:

Затем, объединяя все последовательно соединенные элементы, завершаем эквивалентное преобразование схемы (рис. 1.15, в):

В последней схеме находим ток I1:

Теперь возвращаемся к предыдущей схеме . Видим, что найдCенный ток I1 протекает через R1, R2,3, R4 и создает на них падение напряжения. Найдем эти напряжения:.Возвращаясь к исходной схеме , видим, что найденное напряжениеUаб прикладывается к элементам R2 и R3.

Значит, можем записать, чтоU2 = U3 = Uа,б

Токи в этих элементах находят из совершенно очевидных соотношений:

Итак, схема рассчитана.

Соседние файлы в папке шпоргалка