Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

разное к тоэ / Rgr3 / Вариант33

.doc
Скачиваний:
9
Добавлен:
26.01.2014
Размер:
71.17 Кб
Скачать

Вариант 33.

Задача 3.1

П реобразуем треугольник в звезду. Zf = (R1 – jXc1)/3

Определить мгновенное значение напряжения между заданными точками и подсчитать активную мощность трехфазной системы.

Дано: EAm/2 = 120 В, T = 0,015 с, R1 = 7,66 Ом, R2 = 2 Ом, C1 = 398 мкФ, L = 4,78 мГн, Ubc - ?

Так как дан режим симметричной нагрузки, то равны комплексные сопротивления фаз приемников (Za = Zb = Zc = Zф) и комплексные линейные сопротивления проводов (Zлa = Zлc = Zлb = Zл). В этом случае равны также комплексные проводимости фаз (Ya = Yb = Yc = Y).

Для симметричной нагрузки смещения нейтрали приемника относительно нейтрали источника не будет, то есть UnN = 0.

Найдем комплексные сопротивления фаз и проводов Zф = (R1 – jXc1)/3, Zл = jXl. Y = 1/(Zф + Zл)

Определим фазные токи:

Uф = Ea/2

Ia = (Ea – UnN)Ya = UфY

Ib = (Eb – UnN)Yb = UфYe -j120

Ic = (Ec – UnN)Yc = UфYe j120

Чтобы найти напряжение Ubc, запишем уравнение по 2 закону Кирхгофа:

Zf(Ib – Ic) – Ubc = 0

Из этого уравнения найдем Ubc.

Перейдем к мгновенным значениям ubc.

Активную мощность 3-фазной системы при симметричной нагрузке найдем по формуле P3ф = 3Pa = 3*Re[EA Ia*]

З адача 3.3

Дано: L = 1,72 мГн, C = 0,344 мкФ, T = 0,416 10-3 с, Um = 100 В.

1) Определить значения граничных частот полосы прозрачности фильтра (частот среза).

Найдем частоту среза из условия a11 = -1:

Для данного фильтра a11 = 1 + Z4/Z5 = 1 – 1/(2LC), то есть

1 – 1/(2LC) = -1

ср = 1/2LC

2) Качественно построить зависимость характеристического сопротивления Z0, затухания a и сдвига по фазе b в функции частоты .

Z0 = Z1кZ1х

Z1к = jXL(-jXC)/(jXL – jXC)

Z1х = jXL j(XL – XC)/j(2XL – XC) = jXL(XL – XC)/(2XL – XC)

Z0 = (XL2 XC)/(2XL – XC) = (2L2)/(22LC – 1) = 1/(2C/L1/2L2)

См. рисунок

 = a + jb

Для полосы пропускания a = 0, b = -arccos(a11). В данном случае a11 = 1 – 1/(2LC), значит b = -arccos(1 – 1/(2LC)).

Для полосы затухания b = -, a = arcch(-a11) = arcch(1/(2LC) – 1).

См. рисунок

3) На вход низкочастотного фильтра подать напряжение U1 = U1msin(t), на вход высокочастотного фильтра – U1 = U1msin(3t). Определить численные значения постоянной передачи  = a + jb, характеристического сопротивления Z0, напряжений и токов во всех ветвях схемы и построить по ним векторную диаграмму токов и напряжений фильтра.

р = 3(2/T) = 6/T

Z0 = 1/(2C/L1/2L2)

a = 0

b = -arccos(1 – 1/2LC)

Соседние файлы в папке Rgr3