
разное к тоэ / Лекции
.doc
В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для к-й гармоники вещественно. Пусть имеет место цепь на рис. 1,а, питающаяся от источника несинусоидальной ЭДС, в которой емкость конденсатора может плавно изменяться от нуля до бесконечности.
Для к-й гармоники тока можно записать
где
Таким образом, при изменении
С величина к-й гармоники тока будет
изменяться от нуля при С=0 до
Следует отметить, что,
несмотря на то, что обычно с ростом
порядка гармонической ЭДС ее амплитуда
уменьшается, в режиме резонанса для
к-й гармонической ее значение
Резонансные явления используются для выделения гармоник одних частот и подавления других. Пусть, например, в цепи на рис. 2 необходимо усилить q-ю гармонику тока на нагрузке и подавить р-ю.
Д
Для выделения q-й гармоники вся цепь для нее настраивается в режим резонанса напряжений:
откуда при известных
Отметим, что рассмотренные явления лежат в основе работы L-C -фильтров.
Особенности протекания несинусоидальных токов через пассивные элементы цепи
1
При
где
Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте. 2. Конденсатор.
П Коэффициент искажения кривой напряжения
Ток через конденсатор
Тогда соответствующий кривой тока коэффициент искажения
Сравнение (1) и (2) показывает, что
Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока. 3. Катушка индуктивности.
П
совершенно аналогично
можно показать, что в случае индуктивного
элемента
С учетом вышесказанного на практике, например в силовой полупроводниковой технике, для сглаживания выпрямленного напряжения применяют конденсаторные фильтры, а для тока – дроссели.
Высшие гармоники в трехфазных цепях
Напряжения трехфазных
источников энергии часто бывают
существенно несинусоидальными (строго
говоря, они несинусоидальны всегда).
При этом напряжения на фазах В и С
повторяют несинусоидальную кривую
Пусть для фазы А к-я гармоника напряжения
Тогда с учетом, что
Всю совокупность гармоник
к от 0 до
1.
Действительно,
и
2.
т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности.
3.
Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности. Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем.
1
где
2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем:
Таким образом, показание вольтметра в цепи на рис. 8
3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем. При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных. При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора. Таким образом, при соединении в треугольник напряжение генератора
и ток
В свою очередь при соединении в звезду
4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность:
5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками
Литература
Контрольные вопросы
Определить действующие значения линейного напряжения, фазных напряжений генератора и приемника, а также напряжение смещения нейтрали.
Ответ:
Определить ток в нейтральном проводе, если сопротивление фазы нагрузки R=10 Ом.
Ответ:
Определить действующее значение линейного тока.
Ответ:
|
||||
Лекция N 23. Резонансные явления в цепях несинусоидального тока. |
В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для к-й гармоники вещественно. Пусть имеет место цепь на рис. 1,а, питающаяся от источника несинусоидальной ЭДС, в которой емкость конденсатора может плавно изменяться от нуля до бесконечности.
Для к-й гармоники тока можно записать
где
Таким образом, при изменении
С величина к-й гармоники тока будет
изменяться от нуля при С=0 до
Следует отметить, что,
несмотря на то, что обычно с ростом
порядка гармонической ЭДС ее амплитуда
уменьшается, в режиме резонанса для
к-й гармонической ее значение
Резонансные явления используются для выделения гармоник одних частот и подавления других. Пусть, например, в цепи на рис. 2 необходимо усилить q-ю гармонику тока на нагрузке и подавить р-ю.
Д
Для выделения q-й гармоники вся цепь для нее настраивается в режим резонанса напряжений:
откуда при известных
Отметим, что рассмотренные явления лежат в основе работы L-C -фильтров.
Особенности протекания несинусоидальных токов через пассивные элементы цепи
1
При
где
Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте. 2. Конденсатор.
П Коэффициент искажения кривой напряжения
Ток через конденсатор
Тогда соответствующий кривой тока коэффициент искажения
Сравнение (1) и (2) показывает, что
Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока. 3. Катушка индуктивности.
П
совершенно аналогично
можно показать, что в случае индуктивного
элемента
С учетом вышесказанного на практике, например в силовой полупроводниковой технике, для сглаживания выпрямленного напряжения применяют конденсаторные фильтры, а для тока – дроссели.
Высшие гармоники в трехфазных цепях
Напряжения трехфазных
источников энергии часто бывают
существенно несинусоидальными (строго
говоря, они несинусоидальны всегда).
При этом напряжения на фазах В и С
повторяют несинусоидальную кривую
Пусть для фазы А к-я гармоника напряжения
Тогда с учетом, что
Всю совокупность гармоник
к от 0 до
1.
Действительно,
и
2.
т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности.
3.
Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности. Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем.
1
где
2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем:
Таким образом, показание вольтметра в цепи на рис. 8
3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем. При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных. При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора. Таким образом, при соединении в треугольник напряжение генератора
и ток
В свою очередь при соединении в звезду
4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность:
5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками
Литература
Контрольные вопросы
Определить действующие значения линейного напряжения, фазных напряжений генератора и приемника, а также напряжение смещения нейтрали.
Ответ:
Определить ток в нейтральном проводе, если сопротивление фазы нагрузки R=10 Ом.
Ответ:
Определить действующее значение линейного тока.
Ответ:
|
||||
Лекция N 25. Способы составления характеристического уравнения. |