Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен / Билеты с ответами.doc
Скачиваний:
85
Добавлен:
26.01.2014
Размер:
854.53 Кб
Скачать

Билет№3

1.Составление дифференциальных уравнений цепи. Принципы решения дифференциальных уравнений. Классический метод. Классический метод расчета

Классический метод расчета переходных процессов заключается в непосредственном интегрировании дифференциальных уравнений, описывающих изменения токов и напряжений на участках цепи в переходном процессе.

В общем случае при использовании классического метода расчета составляются уравнения электромагнитного состояния цепи по законам Ома и Кирхгофа для мгновенных значений напряжений и токов, связанных между собой на отдельных  элементах цепи соотношениями

Классический метод расчёта переходных процессов

Классический метод расчета переходных процессов основан на составлении и последующем решении (интегрировании) дифференциальных уравнений, составленных по законам Кирхгофа и связывающих искомые токи и напряжения послекоммутационной цепи и заданные воздействующие функции (источники электрической энергии. Преобразуя систему уравнений, можно вывести итоговое дифференциальное уравнение относительно какой-либо одной переменной величины x(t):

. (4.2)

Здесь n – порядок дифференциального уравнения, он же – порядок цепи, коэффициенты ak > 0 и определяются параметрами пассивных элементов R, L, C цепи, а правая часть является функцией задающих воздействий.

В соответствии с классической теорией дифференциальных уравнений полное решение неоднородного дифференциального уравнения находится в виде суммы частного решения неоднородного дифференциального уравнения и общего решения однородного дифференциального уравнения:

. (4.3)

Частное решение полностью определяется видом правой части f(t) дифференциального уравнения. В электротехнических задачах правая часть зависит от воздействующих источников электрической энергии, поэтому вид обуславливается (принуждается) источниками электрической энергии и называется принужденной составляющей .

Общее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которые определяются коэффициентами дифференциального уравнения, и не зависит от правой части. В прикладных задачах электротехникине зависит (свободно) от воздействующих источников и по этой причине называетсясвободной составляющей и полностью определяется параметрами пассивных элементов цепи, а физически процессом перераспределения запасов энергии электрического и магнитного полей в реактивных элементах цепи.

Таким образом, любая искомая величина в переходном режиме

. (4.3)

Свободную составляющую переходного процесса ищут в виде

, (4.4)

где n – порядок цепи, совпадающий с порядком дифференциального уравнения;

pk – корни характеристического уравнения (собственные числа цепи);

Ak – постоянные интегрирования.

Собственные числа линейных цепей либо действительные отрицательные, либо комплексные с отрицательными вещественными частями (т.е. находятся в левой полуплоскости комплексных чисел). Поэтому носит преходящий (асимптотически затухающий до нуля) характер.

В искомом решении надо уметь определять величины,n, pk, Ak.

Общая характеристика переходных процессов

       В электрических цепях возможны включения и отключения отдельных ветвей, короткие замыкания участков цепи, различного рода переключения. Любые изменения в электрических цепях можно представить в виде переключений или коммутаций. Характер коммутации указывается в схеме с помощью рубильника со стрелкой. По направлению стрелки можно судить, замыкается или размыкается рубильник.       При коммутации в цепи возникают переходные процессы, т.е. процессы перехода токов и напряжений от одного установившегося значения к другому.     Изменения  токов  и напряжений  вызывают    одновременное  изменение  энергии электрического и магнитного полей, связанных с элементами цепи - емкостями и индуктивностями. Однако энергия электрического поля и энергия магнитного поля могут изменяться только непрерывно, так как скачкообразное изменение потребовало бы от источника бесконечно большой мощности. На этом рассуждении основаны законы коммутации.

      Первый закон. В любой ветви с индуктивностью ток не может изменяться скачком и в момент коммутации сохраняет то значение, которое он имел непосредственно перед моментом коммутации

iL (0+) = iL (0-),

      где  iL (0+) - ток в ветви с индуктивностью в момент коммутации, сразу после коммутации. Знак "+" в формуле обычно не записывается. Время переходного процесса отсчитывается от момента коммутации;              iL (0-) - ток в индуктивности непосредственно перед коммутацией.

      Второй закон. Напряжение на емкости сразу после коммутации сохраняет то значение, которое оно имело непосредственно перед моментом коммутации.

uC (0+) = uC (0-),

      где  uC (0+) - напряжение на емкости в момент коммутации;              uC (0-) - напряжение на емкости непосредственно перед моментом коммутации.

      Допущения, применяемые при анализе переходных процессов.

  1. Полагают, что переходный процесс длится бесконечно большое время.

  2. Считают, что замыкание и размыкание рубильника происходит мгновенно, без образования электрической дуги.

  3. Принимают, что к моменту коммутации предыдущие переходные процессы в цепи закончились.

    В соответствии с классическим методом расчета, переходный ток в ветви схемы представляют в виде суммы принужденного и свободного токов.

.

      где  iпр(t) - принужденный ток, определяется в установившемся режиме после коммутации. Этот ток создается внешним источником питания. Если в цепь включен источник постоянной ЭДС, принужденный ток будет постоянным, если в цепи действует источник синусоидальной ЭДС, принужденный ток изменяется по периодическому, синусоидальному закону;              iсв(t) - свободный ток, определяется в схеме после коммутации, из которой исключен внешний источник питания. Свободный ток создается внутренними источниками питания: ЭДС самоиндукции индуктивности или напряжением заряженной емкости.

      Свободный ток определяют по формуле:

.

      Количество слагаемых в формуле равно числу реактивных элементов (индуктивностей и емкостей) в схеме.       P1, P2 - корни характеристического уравнения.       А1, А2 - постоянные интегрирования, определяются с помощью начальных условий.       Начальные условия - это переходные токи и напряжения в момент коммутации, в момент времени t, равный нулю.       Начальные условия могут быть независимыми или зависимыми.       Независимыми называют начальные условия, подчиняющиеся законам коммутации, законам постепенного, непрерывного изменения. Это напряжение на емкости uc(0) и ток в ветви с индуктивностью iL(0) в момент коммутации.       Остальные начальные условия: напряжение и ток в ветви с сопротивлением uR(0)   и    iR(0), напряжение на индуктивности uL(0) , ток в ветви с емкостью iC(0) - это зависимые начальные условия. Они не подчиняются законам коммутации и могут изменяться скачком.

Соседние файлы в папке экзамен