
- •Министерство образования и науки украины
- •Список основных сокращений
- •Введение
- •1. Электрические сигналы
- •1.1. Термины и определения
- •1.2. Спектр сигнала
- •1.3. Параметры импульсов и импульсных последовательностей
- •Контрольные вопросы
- •2. Прохождение сигнала через линейные электрические цепи
- •2.1. Электрические цепи
- •2.2. Частотно-независимый делитель напряжения
- •2.3. Интегрирующие линейные цепи
- •2.4. Дифференцирующие линейные цепи
- •2.5. Полосовые фильтры
- •Контрольные вопросы
- •3. Электронные усилители
- •3.1. Классификация и основные параметры усилителей
- •3.2. Усилительный каскад с общим эмиттером
- •3.3. Усилительный каскад с общим коллектором
- •3.4. Усилительный каскад с общей базой
- •3.5. Усилительные каскады на моп – транзисторах
- •3.6. Усилительные каскады на двух транзисторах
- •3.6.1. Каскадный усилитель
- •3.6.2. Дифференциальные усилители. Принцип действия и основные параметры
- •3.6.3. Типы дифференциальных усилителей
- •Контрольные вопросы
- •4. Электронные ключи
- •4.1. Общие характеристики нелинейных ключевых цепей
- •4.2. Диодные ключи
- •4.3. Ключи на биполярных транзисторах
- •4.4. Ключи на моп−транзисторах
- •4.5. Переключатель тока
- •4.6. Способы повышения быстродействия транзисторных ключей
- •4.7. Ключи на тиристорах
- •4.8. Аналоговые ключи
- •Контрольные вопросы
- •5. Триггеры
- •5.1. Общие сведения
- •5.2. Триггеры на транзисторах
- •Контрольные вопросы
- •6. Генераторы электрических сигналов
- •6.1. Общие характеристики и принципы построения генераторов импульсных сигналов
- •6.2. Мультивибраторы
- •6.3. Ждущие генераторы прямоугольных импульсов (одновибраторы)
- •6.4. Блокинг-генераторы
- •6.5. Генераторы пилообразных импульсов
- •6.6. Импульсные генераторы и формирователи на приборах с отрицательным сопротивлением
- •6.7. Генераторы и формирователи на триодных тиристорах
- •Контрольные вопросы
- •Список литературы
- •Содержание
- •Електронні елементи автоматики
3.4. Усилительный каскад с общей базой
Принципиальная схема каскада ОБ приведена на рис. 3.16. Потенциал базы транзистора зафиксирован делителем напряжения RБ1, RБ2. Входной сигнал подается на RЭ, следовательно, URЭ=UВХ. Управляющим напряжением по-прежнему остается UБЭ, и, как видно из рисунка оно равно
.
(3.67)
Рисунок 3.16 – Усилитель с общей базой
Таким образом, UБЭ изменяется противофазно входному сигналу (временные диаграммы усилителя ОБ приведены на рис. 3.17). И поскольку напряжение на коллекторе будет инвертироваться еще раз, переменная составляющая выходного напряжения совпадает по фазе со входным сигналом. Действительно, при поступлении на вход положительной полуволны URЭ возрастает, следовательно, UБЭ уменьшается, что приводит к призакрыванию транзистора. Ток в коллекторной цепи транзистора уменьшается, следовательно и падение напряжения на RК уменьшается, что приводит к росту потенциала коллектора и выходного напряжения. Следует отметить, что выходной ток (ток коллектора), приблизительно равен входному, из-за чего усилитель ОБ называют повторителем тока. Для снижения влияния пульсаций питающего напряжения на работу усилителя и подавления паразитной обратной связи по шине питания стабилизируют потенциал базы транзистора с помощью конденсатора СБ. Разделительные конденсаторы СР1, СР2 выполняют такую же функцию, что и в предыдущих схемах.
Малосигнальная
эквивалентная схема каскада, необходимая
для определения параметров, приведена
на рис.3.18.
Параллельное соединение сопроти-влений RК и RН обозначается, как и в каскаде ОЭ, величиной RКН.
1. Входное сопротивление.
Входное сопротивление транзистора между тачками 0−О”
.
(3.68)
Если учесть соотношения (3.56), то
.
(3.69)
Входное сопротивление усилитель-ного каскада (между точками 1−1')
.
(3.70)
В каскаде ОБ величина RВХ.Т мала и составляет десятки Ом. Поэтому обычно RВХ.Т<<RЭ и, следовательно,
.
(3.71)
Рисунок 3.18 − Малосигнальная эквивалентная схема каскада
2. Коэффициенты усиления ЭДС и напряжения
.
(3.72)
При RВХ.Т<<RЭ , что равносильно равенству iВХ = iЭ, а также учитывая (3.23), можно записать
.
(3.73)
Сравнивая (3.73) и (3.29), можно заметить, что при одинаковых параметрах каскадов ОБ и ОЭ КеОБ<КeОЭ. Обычно КеОБ <10. Малое значение КеОБ в каскаде ОБ обусловлено весьма малым входным сопротивлением транзистора и, следовательно, более сильным влиянием сопротивления RГ, на коэффициент усиления Ке.
Коэффициент усиления напряжения
.
(3.74)
При одинаковых параметрах каскадов ОБ и ОЭ КUОБ<КUОЭ.
3. Коэффициент усиления тока. Из эквивалентной схемы рис. 3.18 можно записать iКRКН = iВЫХRН и iЭRВХ.Т = iВХRВХ. С учетом (3.23), (3.24) и (3.74), можно записать
.
(3.75)
Коэффициент
усиления
тока достигает максимального
значения при RК >> RН
и RЭ >> RВХ.Т
.
4. Коэффициент усиления мощности. Обычно КU>1, Кi ≈ α ≈ 1. Поэтому КP = КU Кi = Ке >1. Однако b усилителе ОБ коэффициент усиления мощности меньше, чем в усилителе ОЭ.
5. Выходное сопротивление. Как и для каскада ОЭ, выходное сопротивление состоит из параллельного соединения сопротивления RК и выходного сопротивления транзистора RВЫХ.Т
.
(3.76)
Выходное сопротивление транзистора
.
(3.77)
Так как RК<<rК то
.
(3.78)
Из сравнения (3.77) и (3.78) с аналогичными выражениями для усилителя ОЭ следует, что выходные сопротивления каскадов ОБ и ОЭ при одинаковых параметрах элементов схемы (RК) примерно одинаковы, а выходное сопротивление транзистора в каскаде ОБ значительно больше, чем в каскаде ОЭ.
Таким образом, каскад ОБ усиливает сигнал по напряжению и мощности (Ке>1, КU>1, КP>1), не усиливает по току (Кi<1), имеет малое входное сопротивление (десятки Ом) и большое выходное сопротивление. Из-за этого использование усилителя ОБ в многокаскадных усилителях без специальных мер согласования малоэффективно. Для согласования каскадов ОБ, входящих в состав многокаскадного усилителя, можно включить между ними каскады ОК. Усилитель ОБ используется как составная часть каскадного усилителя, схема которого будет рассмотрена ниже.