
- •Часть 1 – Теория автоматического управления – содержит основные понятия и математические основы проектирования систем регулирования;
- •1.2 Классификация аср
- •1 По назначению (по характеру изменения задания):
- •2 По количеству контуров:
- •1.3 Классификация элементов систем
- •2 Характеристики и модели элементов и систем
- •2.1 Основные модели
- •2.2 Статические характеристики
- •2.3 Временные характеристики
- •2.4 Дифференциальные уравнения. Линеаризация
- •2.5 Преобразования Лапласа
- •2.6 Передаточные функции
- •2.6.1 Определение передаточной функции
- •2.6.2 Примеры типовых звеньев
- •2.6.3 Соединения звеньев
- •2.6.4 Передаточные функции аср
- •2.6.5 Определение параметров передаточной функции объекта по переходной кривой
- •2.7 Частотные характеристики
- •2.7.1 Определение частотных характеристик
- •2.7.2 Логарифмические частотные характеристики
- •3 Качество процессов управления
- •3.1 Критерии устойчивости
- •3.1.1 Понятие устойчивости линейных систем
- •3.1.2 Корневой критерий
- •3.1.3 Критерий Стодолы
- •3.1.4 Критерий Гурвица
- •3.1.5 Критерий Михайлова
- •3.1.6 Критерий Найквиста
- •3.2 Показатели качества
- •3.2.1 Прямые показатели качества
- •3.2.2 Корневые показатели качества
- •3.2.3 Частотные показатели качества
- •3.2.4. Интегральные показатели качества
- •3.2.5 Связи между показателями качества
- •4. Настройка регуляторов
- •4.1. Типовые законы регулирования
- •4.2 Определение оптимальных настроек регуляторов
- •Часть 2. Средства автоматизации и управления
- •1 Измерения технологических параметров
- •1.1 Государственная система приборов (гсп)
- •1.2 Основные определения
- •1.3 Классификация контрольно-измерительных приборов
- •1.4 Виды первичных преобразователей
- •1.5 Методы и приборы для измерения температуры
- •1.5.1 Классификация термометров
- •1.5.2 Термометры расширения. Жидкостные стеклянные
- •1.5.3 Термометры, основанные на расширении твердых тел
- •1.5.4 Газовые манометрические термометры
- •1.5.5 Жидкостные манометрические термометры
- •1.5.6 Конденсационные манометрические термометры
- •1.5.7 Электрические термометры
- •1.5.8 Термометры сопротивления
- •1.5.9 Пирометры излучения
- •1.5.10 Цветовые пирометры
- •1.6 Вторичные приборы для измерения разности потенциалов
- •1.6.1 Пирометрические милливольтметры
- •1.6.2 Потенциометры
- •1.6.3 Автоматические электрические потенциометры
- •1.7 Методы измерения сопротивления
- •1.8 Методы и приборы для измерения давления и разряжения
- •1.8.1 Классификация приборов для измерения давления
- •I. По принципу действия:
- •1.9 Методы и приборы для измерения расхода пара, газа и жидкости
- •1.9.1 Классификация
- •1.9.2 Метод переменного перепада давления
- •1.9.3 Расходомеры постоянного перепада давления
- •1.9.4 Расходомеры переменного уровня
- •1.10.4 Гидростатические уровнемеры
- •1.10.5 Электрические методы измерения уровня
- •1.10.6 Радиоволновые уровнемеры
- •2 Исполнительные устройства
- •2.1 Классификация исполнительных устройств
- •2.2 Исполнительные устройства насосного типа
- •2.3 Исполнительные устройства реологического типа
- •2.4 Исполнительные устройства дроссельного типа
- •2.5 Исполнительные механизмы
- •3 Функциональные схемы автоматизации
- •3.1 Условные обозначения
- •3.2 Примеры построения условных обозначений приборов и средств автоматизации
- •3.3 Основные принципы построения функциональных схем автоматизации
- •Xe [xt] xiа лампочка.
- •Xe [xt] xirа лампочка.
- •Xe [xt] xiс задвижка.
- •3.4 Примеры схем контроля температуры
- •1 Индикация и регистрация расхода (fqir, рисунок 2.46)
- •2 Индикация и регистрация расхода (fir, электрическая ветвь, рисунок 2.47)
- •3Индикация, регистрация и регулирование расхода (firc, пневматика, рисунок 2.48)
- •4 Каскадно-связанное (многоконтурное) регулирование расхода с коррекцией по уровню (firc, lirc, пневматика, рисунок 2.49)
- •Часть 3. Современные системы управления производством
- •1 Структура современной асутп
- •2 Аппаратная реализация систем управления
- •2.1 Средства измерения технологических параметров
- •2.2 Устройства связи с объектом
- •2.3 Аппаратная и программная платформа контроллеров
- •2.4 Промышленные сети
- •3 Программная реализация систем управления
- •3.1 Виды программного обеспечения
- •3.2 Scada-системы
- •3.3 Работа с субд
- •3.3.1 Принципы работы баз данных
- •3.3.2 Обеспечение безопасности баз данных
- •3.3.3 Операторы языка sql
- •3.4 Методология idef
- •3.4.1 Модели систем
- •3.4.2 Методика построения функциональной модели
- •3.4.3 Методика построения информационной модели
- •3.5 Программные системы управления производством
- •Список литературы
- •Приложение а
- •1 Шина asi
- •2 Шина ControlNet
- •3 Шина Interbus
- •4 Шина can
- •5 Протокол hart
- •6 Шина Foundation Fieldbus
- •7 Протокол lon (lonTalk)
- •8 Шина DeviceNet
- •9 Протокол WorldFip
- •10 Сеть Profibus
- •11 Протокол Ethernet
- •Приложение б
- •Приложение в
- •Приложение г
- •Содержание
- •Часть 1. Теория Автоматического Управления (тау) 4
- •Часть 2. Средства автоматизации и управления 63
- •Часть 3. Современные системы управления производством 104
Xe [xt] xiа лампочка.
Вариант 5. Измерение с индикацией, регистрацией и сигнализацией на щите (XIRA, рисунки 2.33,д и 2.33,е). Для реализации перечисленных функций либо на щит устанавливается прибор, одновременно выполняющий их, либо используется комбинация схем из вариантов 3 и 4. В первом случае цепочка передачи воздействий:
Xe [xt] xirа лампочка.
Во втором производится ветвление сигнала с первичного или вторичного преобразователя на два прибора: на регистратор (XIR) и на прибор с сигнализацией (XIA):
XE
[XT]
XIR
XIА лампочка.
а) б)
Рисунок 2.34
Вариант 6. Регулирование (XIC, рисунок 2.34,а). Регулирование подразумевает наличие регулятора и управляющего воздействия на объект. На предприятиях нефтеперерабатывающей, газовой и химической промышленности для реализации управляющих воздействий на объект управления в основном используются задвижки, клапаны и другие устройства дроссельного типа. Принципы построения современных систем управления требуют при регулировании отображения регулируемого параметра для контроля за процессом регулирования, поэтому дополнительно реализуется функция индикации:
Xe [xt] xiс задвижка.
Вариант 7. Регулирование, регистрация, индикация и сигнализация технологического параметра (XIRCA, рисунок 2.34,б). Функции также реализуются с помощью единого устройства, которое позволяет это сделать (например, с помощью пишущего потенциометра КСП-4 со строенными блоками регулирования и сигнализации), либо с помощью нескольких устройств, установленных на щите и реализующих каждое свою функцию. Ветвление сигнала также идет после первичного или вторичного преобразователя.
Далее несколько схем рассматривается более подробно.
3.4 Примеры схем контроля температуры
1
Индикация и регистрация температуры
(TIR,
рисунок 2.35)
101-1 Термоэлектрический термометр тип ТХА, гр. ХА, пределы измерения от –50 С до 900 С, материал корпуса Ст0Х20Н14С2, марка ТХА-0515
101-2 Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА, марка Ш-72
1
Рисунок
2.35
Примечание - Другие виды амперметров А-502, А-503 – показывающие, А-542, А-543 – регистрирующие (последняя цифра – число параметров); А-100 – показывающий на 1 параметр.
2
Индикация, регистрация и регулирование
температуры с помощью пневматического
регулятора (TIRС,
пневматика, рисунок 2.36)
102-1 то же, что 101-1
102-2 то же, что 101-2
102-3 электропневмопреобразователь, входной сигнал 0…5 мА, выходной – стандартный пневматический 0,02…0,1 МПа, марка ЭПП-63 (или ЭПП-180)
102-4 пневматический вторичный прибор на 3 параметра со станцией управления, марка ПВ 10.1Э (с электроприводом диаграммной ленты)
1
Рисунок
2.36
Примечание - Регуляторы ПР 2.31 сняты с производства.
3
Индикация и регулирование температуры
с помощью микропроцессорного регулятора
(TIС,
электрическая ветвь, рисунок 2.37)
103-1 то же, что 101-1
103-2 Трехканальный микропроцессорный регулятор типа «Протерм-100»
103-3 Регулирующий клапан для неагрессивных сред, корпус из чугуна, предельная температура Т = 300 С, давление Ру = 1,6 МПа, условный диаметр Dу = 100 мм, тип 25нч32нж.
4
Индикация, регистрация, сигнализация
и регулирование температуры с помощью
потенциометра (моста) (TIRС,
электрическая ветвь, рисунок 2.38)
104-1 то же, что 101-1
104-2 Автоматический электронный потенциометр на 1 точку со встроенными устройствами регулирования и сигнализации, тип КСП-4 (или автоматический электронный мост типа КСМ-4 и т.д.)
104-3 Лампа сигнальная Л-1
104-4 то же, что 103-3
5 Измерение температуры многоточечным прибором (TJIR, рисунок 2.39)
105-1 – 105-3 Термопреобразователи сопротивления (ТСП-6097),
105-4 - электронный мост (КСП-4)
3.5 Примеры схем контроля давления
1 Индикация давления (PI)
210-1 Манометр пружинный ОБМ1-160
2Сигнализация давления (PA,
рисунок 2.41)
202-1 Пневматический первичный преобразователь давления, предел измерения 0… 1,6 МПа, выходной сигнал 0,02…0,1 МПа, марка МС-П-2 (манометр сильфонный с пневмовыходом)
202-2 Электроконтактный манометр с сигнальной лампой ЭКМ-1
202-3 то же, что 104-3.
3 Индикация, регистрация и регулирование давления (PIRC, пневматика, рисунок 2.42)
203-1 то же, что 202-1
203-2 то же, что 102-4
203-3 то же, что 102-5
203-4 то же, что 103-3
4 Индикация и регистрация давления
(PIR,
электрическая ветвь, рисунок 2.43)
204-1 Первичный преобразователь давления со стандартным токовым выходом 0…5 мА, марка МС-Э (или Сапфир-22ДИ и т.д.)
204-2 то же, что 101-3
5 Индикация, регистрация, регулирование и сигнализация давления (PIRCA, пневматика, рисунок 2.44)
205-1 то же, что 202-1; 205-2 то же, что 102-4;
205-3 то же, что 102-5; 205-4 то же, что 103-3;
205-5 то же, что 202-2; 205-6 то же, что 202-3.
3.6
Схемы контроля расхода
Схемы контроля уровня аналогичны схемам контроля давления, поскольку его значение при измерении либо преобразуется в давление (см. рисунок 2.45,а), либо датчики уровня, как и датчики давления, имеют на выходе стандартный пневматический или электрический сигнал (см. рисунок 2.45,б).
Для измерения расхода жидкости первичные преобразователи устанавливаются в сечении трубопровода, поэтому на схеме их обозначения также, как правило, изображаются встроенным в трубопровод.
При использовании сужающих устройств, например, диафрагм, перепад давлений на них замеряется дифманометрами, поэтому схемы автоматизации аналогичны схемам контроля давления. Прочие расходомеры, как правило, уже имеют на выходе стандартный сигнал.
Примеры схем:
301-1
Диафрагма марки ДК6-50-II-а/г-2
(диафрагма камерная, давление Ру
= 6 атм, диаметр Dу
= 50 мм)
301-2 Дифманометр с пневмовыходом 0,02…0,1 МПа, марка ДС-П1 (для пневматики) или «Сапфир-22ДД» (для электрической схемы)
302-1 Ротаметр РД-П (с пневмовыходом) или РД-Э (с электрическим выходом)