
- •Математика
- •Глава 1 подготовлена м. Н. Рассказовой, глава 2 – о. П. Диденко, предисловие, введение, глава 3, алфавитно-предметный указатель – с. Х. Мухаметдиновой.
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1. Элементы линейной алгебры и аналитической геометрии
- •Линейная алгебра
- •Операции над матрицами
- •Свойства операций над матрицами:
- •Определители матриц и их свойства
- •Обратная матрица. Решение матричных уравнений
- •Системы линейных уравнений
- •Построение моделей задач, сводящихся к системам линейных уравнений
- •1.1.6. Применение элементов линейной алгебры в экономике
- •1.1.7. Модель Леонтьева межотраслевого баланса
- •Контрольные задания
- •Векторная алгебра
- •Векторы. Линейные операции над векторами
- •Скалярное, векторное, смешанное произведение векторов
- •Линейные операторы. Собственные векторы и собственные значения
- •Контрольные задания
- •Аналитическая геометрия
- •Прямая на плоскости
- •Окружность. Эллипс. Гипербола. Парабола
- •Прямая и плоскость в пространстве
- •Контрольные задания
- •Глава 2. Математический анализ
- •2.1. Функции одной переменной
- •Контрольные задания
- •2.2. Предел и непрерывность функции
- •Некоторые свойства пределов
- •2.2.1. Замечательные пределы
- •2.2.2. Непрерывность функции в точке
- •Контрольные задания
- •2.3.2. Применение производной в экономике
- •2.3.3. Дифференциал функции
- •Контрольные задания
- •2.4. Приложения производной
- •2.4.1. Исследование функции на монотонность,
- •Экстремумы и выпуклость.
- •Асимптоты графика функции
- •2.4.2. Общая схема исследования функции
- •И построения ее графика
- •Контрольные задания
- •2.5.2. Метод интегрирования по частям
- •2.6.2. Геометрические приложения
- •Определенного интеграла
- •Применение определенного интеграла
- •В экономике
- •Несобственные интегралы
- •Функции нескольких переменных
- •2.7.1. Частные производные, дифференциал,
- •Градиент функции
- •2.7.2. Частные производные 2-го порядка.
- •Исследование функции на экстремум
- •2.7.3. Метод наименьших квадратов
- •Контрольные задания
- •2.8. Дифференциальные уравнения
- •1. Уравнение с разделяющимися переменными
- •2. Однородные уравнения 1-го порядка
- •3. Линейные уравнения 1-го порядка
- •4. Линейные однородные уравнения 2-го порядка
- •С постоянными коэффициентами
- •2.9. Последовательности и ряды
- •2.9.1. Предел последовательности
- •2.9.2. Числовые ряды
- •Достаточный признак расходимости ряда
- •Признаки сходимости рядов с положительными членами:
- •2.9.3. Степенные ряды
- •Контрольные задания
- •3.1.3. Размещения
- •Сочетания
- •Если в формуле (3.5) заменить число k на n − k, то получим:
- •Правило сложения
- •Правило произведения
- •Контрольные вопросы
- •Элементы теории вероятностей
- •3.2.1. Основные понятия теории вероятностей
- •3.2.2. Классификация событий
- •3.2.3. Алгебра событий
- •3.2.4. Статистический подход к понятию вероятности
- •3.2.5. Классический подход к понятию вероятности
- •3.2.6. Решение вероятностных задач
- •С помощью комбинаторики
- •3.2.7. Геометрический подход к понятию вероятности
- •3.2.8. Аксиоматическое определение
- •Понятия вероятности
- •3.2.9. Вероятность суммы несовместных событий
- •3.2.10. Вероятность произведения событий
- •3.2.11. Формула полной вероятности. Формула Байеса
- •3.2.12. Формула Бернулли. Наивероятнейшее число
- •Наступлений события
- •3.2.13. Локальная формула Муавра−Лапласа
- •3.2.14. Интегральная формула Муавра−Лапласа
- •3.2.15. Формула Пуассона
- •Контрольные вопросы
- •3.3. Случайные величины
- •3.3.1. Дискретные случайные величины.
- •Закон распределения дискретной случайной величины
- •3.3.2. Числовые характеристики
- •Дискретных случайных величин
- •Свойства математического ожидания:
- •Свойства дисперсии:
- •3.3.3. Функция распределения вероятностей
- •Случайной величины
- •Основные свойства функции распределения:
- •3.3.4. Непрерывная случайная величина.
- •3.3.5. Числовые характеристики
- •Непрерывных случайных величин
- •3.3.6. Равномерное распределение
- •3.3.7. Нормальное распределение
- •3.3.8. Показательное распределение
- •Контрольные вопросы
- •3.4. Элементы математической статистики
- •Основные задачи математической статистики
- •3.4.1. Основные понятия математической статистики
- •3.4.2. Точечные оценки параметров распределения
- •3.4.3. Интервальные оценки параметров распределения
- •Интервальные оценки параметров нормального распределения:
- •3.4.4. Проверка статистических гипотез
- •Проверка гипотезы о нормальном распределении
- •Генеральной совокупности по критерию Пирсона
- •Алгоритм применения критерия Пирсона
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Основная литература
- •Дополнительная литература
- •Приложение 1
- •Приложение 2
- •Приложение 3
- •Приложение 4
- •Приложение 5
- •Приложение 6
- •Глава 2 «Математический анализ»
- •Глава 3 «Теория вероятностей и математическая статистика»
- •3.1. Классическое определение вероятности
- •Теоремы сложения и умножения вероятностей
- •Формулы полной вероятности и Байеса
- •3.4. Схема Бернулли. Теорема Муавра-Лапласа, Пуассона
- •3.5. Случайные величины
- •3.6. Законы распределения
- •3.7. Математическая статистика
- •Алфавитно-предметный указатель
- •Математика
- •644099, Омск, ул. Красногвардейская, 9
3)
3.2.9. Вероятность суммы несовместных событий
Теорема. Вероятность суммы несовместных событий
и
равна сумме вероятностей этих событий:
(3.10)
Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:
(3.11)
Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:
(3.12)
Часто при решении задач формулу (3.12) используют в виде:
(3.13)
Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.
Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U1, двух очков через U2,…, шести очков через U6.
Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U4 или U5, следовательно, его можно представить в виде суммы этих событий:
. Т. к. событияU4 и U5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U1, U2,…,U6 равны
, получим:
Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:
Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.
Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?
Пусть событие
− попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событием
событию
, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:
3.2.10. Вероятность произведения событий
Определение. Событие
называетсязависимым от события
если вероятность события
зависит от того, произошло событие
или нет.
Определение. Вероятность события
вычисленная при условии, что событие
произошло, называетсяусловной вероятностью события
и обозначается
Теорема. Вероятность произведения событий
и
равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:
или
(3.14)
Условие независимости события
от события
можно записать в виде
Из этого утверждения следует, что для независимых событий выполняется соотношение:
(3.15)
т. е. вероятность произведения независимых событий
и
, равна произведению их вероятностей.
Замечание. Вероятность произведения нескольких событий
равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:
Если события независимые, то имеем:
Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.
Пусть событие
− появление белого шара при первом вынимании,
− появление белого шара при втором вынимании. Учитывая, что
,
(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как события
и
зависимые, то вероятность их произведения найдем по формуле (3.15):
Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?
Пусть событие
– попадание в цель первым стрелком,
– вторым. Все возможные варианты можно представить в видетаблицы 3.5, где «+» обозначает, что событие произошло, а «−» − не произошло.
Таблица 3.5
+
+
+
−
−
+
−
−
Пусть событие
– попадание хотя бы одним стрелком в цель, Тогда событие
является суммой независимых событий
и
следовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.
Рассмотрим событие
противоположное событию
которое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событий
Используя формулы (3.13) и (3.15), получим:
Пусть событие
– попадание одним стрелком в цель. Это событие можно представить следующим образом:
События
и
– независимые, события
и
также являются независимыми. События, являющиеся произведениями событий
и
– несовместными. Используя формулы (3.10) и (3.15) получим:
Свойства операций сложения и умножения событий:
1.
2.
3.
4.
5.
6.
7.
3.2.11. Формула полной вероятности. Формула Байеса
Пусть событие
может произойти только вместе с одним из попарно несовместных событий (гипотез)
,
,…,
, образующих полную группу, т. е.
Вероятность события
находится по формулеполной вероятности:
(3.16)
Если событие
уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса:
(3.17)
Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.
Найти вероятность того, что этот шар белый.
Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.